
Goodwin G Jinesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3434585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting K-Ras and apoptosis-driven cellular transformation in cancer. Cell Death Discovery, 2021, 7, 80.	4.7	9
2	Mutant p53s and chromosome 19 microRNA cluster overexpression regulate cancer testis antigen expression and cellular transformation in hepatocellular carcinoma. Scientific Reports, 2021, 11, 12673.	3.3	4
3	The genetic script of metastasis. Biological Reviews, 2020, 95, 244-266.	10.4	9
4	Regulation of MYO18B mRNA by a network of C19MC miRNA-520G, IFN-γ, CEBPB, p53 and bFGF in hepatocellular carcinoma. Scientific Reports, 2020, 10, 12371.	3.3	10
5	The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss. PLoS Genetics, 2020, 16, e1008642.	3.5	18
6	Molecular genetics and cellular events of K-Ras-driven tumorigenesis. Oncogene, 2018, 37, 839-846.	5.9	69
7	Chromosome 19 miRNA cluster and CEBPB expression specifically mark and potentially drive triple negative breast cancers. PLoS ONE, 2018, 13, e0206008.	2.5	41
8	CF3DODA-Me induces apoptosis, degrades Sp1, and blocks the transformation phase of the blebbishield emergency program. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 719-729.	4.9	17
9	RalBP1 and p19-VHL play an oncogenic role, and p30-VHL plays a tumor suppressor role during the blebbishield emergency program. Cell Death Discovery, 2017, 3, 17023.	4.7	16
10	The Blebbishield Emergency Program Overrides Chromosomal Instability and Phagocytosis Checkpoints in Cancer Stem Cells. Cancer Research, 2017, 77, 6144-6156.	0.9	13
11	Surface PD-L1,ÂE-cadherin, CD24, and VEGFR2 as markers of epithelial cancer stem cells associated with rapid tumorigenesis. Scientific Reports, 2017, 7, 9602.	3.3	47
12	Blebbishields and mitotic cells exhibit robust macropinocytosis. BioFactors, 2017, 43, 181-186.	5.4	9
13	Exposing the deadly dark side of apoptotic cancer stem cells. Oncoscience, 2017, 4, 124-125.	2.2	11
14	Endocytosis and serpentine filopodia drive blebbishield-mediated resurrection of apoptotic cancer stem cells. Cell Death Discovery, 2016, 2, .	4.7	24
15	Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discovery, 2016, 2, 16003.	4.7	22
16	Novel PKC-ζ to p47phox interaction is necessary for transformation from blebbishields. Scientific Reports, 2016, 6, 23965.	3.3	20
17	MP45-02 CDODA-ME DECREASES SPECIFICITY PROTEIN TRANSCRIPTION FACTORS AND INDUCES APOPTOSIS IN BLADDER CANCER CELLS THROUGH INDUCTION OF REACTIVE OXYGEN SPECIES. Journal of Urology, 2016, 195, .	0.4	0
18	CDODA-Me decreases specificity protein transcription factors and induces apoptosis in bladder cancer cells through induction of reactive oxygen species. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 337.e11-337.e18.	1.6	18

GOODWIN G JINESH

#	Article	IF	CITATIONS
19	Pim kinase isoforms: devils defending cancer cells from therapeutic and immune attacks. Apoptosis: an International Journal on Programmed Cell Death, 2016, 21, 1203-1213.	4.9	31
20	Smac mimetic with TNF-α targets Pim-1 isoforms and reactive oxygen species production to abrogate transformation from blebbishields. Biochemical Journal, 2016, 473, 99-107.	3.7	17
21	Blebbishield emergency program: an apoptotic route to cellular transformation. Cell Death and Differentiation, 2016, 23, 757-758.	11.2	25
22	Sequential gemcitabine and tamoxifen treatment enhances apoptosis and blocks transformation in bladder cancer cells. Oncology Reports, 2015, 34, 2738-2744.	2.6	17
23	Bladder Cancer Stem Cells: Biological and Therapeutic Perspectives. Current Stem Cell Research and Therapy, 2014, 9, 89-101.	1.3	44
24	ZKSCAN3 Is a Master Transcriptional Repressor of Autophagy. Molecular Cell, 2013, 50, 16-28.	9.7	224
25	Blebbishields, the emergency program for cancer stem cells: sphere formation and tumorigenesis after apoptosis. Cell Death and Differentiation, 2013, 20, 382-395.	11.2	60
26	Lenalidomide augments the efficacy of bacillus Calmette-Guerin (BCG) immunotherapy in vivo. Urologic Oncology: Seminars and Original Investigations, 2013, 31, 1676-1682.	1.6	19
27	A Smac mimetic augments the response of urothelial cancer cells to gemcitabine and cisplatin. Cancer Biology and Therapy, 2013, 14, 812-822.	3.4	18
28	Smac mimetic enables the anticancer action of BCG-stimulated neutrophils through TNF-α but not through TRAIL and FasL. Journal of Leukocyte Biology, 2012, 92, 233-244.	3.3	49
29	Redirecting neutrophils against bladder cancer cells by BCG and Smac mimetic combination. Oncolmmunology, 2012, 1, 1161-1162.	4.6	24
30	512 POTENTIAL ROLE OF SMAC MIMETICS AS AN ADJUNCT IN BCG FAILURE PATIENTS WITH NON-MUSCLE INVASIVE BLADDER CANCER. Journal of Urology, 2011, 185, .	0.4	0
31	Bladder Cancer Stem Cells. Current Stem Cell Research and Therapy, 2010, 5, 387-395.	1.3	33
32	Smac mimetic reverses resistance to TRAIL and chemotherapy in human urothelial cancer cells. Cancer Biology and Therapy, 2010, 10, 885-892.	3.4	33
33	Abstract LB-30: Smac mimetic sensitizes antitumor activity of bacillus Calmette-Guerin stimulated neutrophils against bladder cancer cells. , 2010, , .		Ο