
Ankit Nalin Mehta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3434394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma-Enhanced Atomic Layer Deposition of Two-Dimensional WS ₂ from WF ₆ , H ₂ Plasma, and H ₂ S. Chemistry of Materials, 2017, 29, 2927-2938.	6.7	74
2	Two-Dimensional Crystal Grain Size Tuning in WS ₂ Atomic Layer Deposition: An Insight in the Nucleation Mechanism. Chemistry of Materials, 2018, 30, 7648-7663.	6.7	57
3	Formation mechanism of 2D SnS ₂ and SnS by chemical vapor deposition using SnCl ₄ and H ₂ S. Journal of Materials Chemistry C, 2018, 6, 6172-6178.	5.5	56
4	Layer-controlled epitaxy of 2D semiconductors: bridging nanoscale phenomena to wafer-scale uniformity. Nanotechnology, 2018, 29, 425602.	2.6	48
5	Ultra-scaled MOCVD MoS ₂ MOSFETs with 42nm contact pitch and 250ÂμA/Âμm drain current. , 2019, , .		46
6	Nucleation mechanism during WS2 plasma enhanced atomic layer deposition on amorphous Al2O3 and sapphire substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	30
7	Engineering Wafer-Scale Epitaxial Two-Dimensional Materials through Sapphire Template Screening for Advanced High-Performance Nanoelectronics. ACS Nano, 2021, 15, 9482-9494.	14.6	26
8	Nucleation and growth mechanism of 2D SnS ₂ by chemical vapor deposition: initial 3D growth followed by 2D lateral growth. 2D Materials, 2018, 5, 035006.	4.4	23
9	On the van der Waals Epitaxy of Homo-/Heterostructures of Transition Metal Dichalcogenides. ACS Applied Materials & Interfaces, 2020, 12, 27508-27517.	8.0	22
10	Reactive plasma cleaning and restoration of transition metal dichalcogenide monolayers. Npj 2D Materials and Applications, 2021, 5, .	7.9	19
11	Peculiar alignment and strain of 2D WSe ₂ grown by van der Waals epitaxy on reconstructed sapphire surfaces. Nanotechnology, 2019, 30, 465601.	2.6	17
12	Effects of buried grain boundaries in multilayer MoS2. Nanotechnology, 2019, 30, 285705.	2.6	16
13	Importance of the substrate's surface evolution during the MOVPE growth of 2D-transition metal dichalcogenides. Nanotechnology, 2020, 31, 125604.	2.6	15
14	Unravelling stacking order in epitaxial bilayer MX ₂ using 4D-STEM with unsupervised learning. Nanotechnology, 2020, 31, 445702.	2.6	15
15	Understanding noninvasive charge transfer doping of graphene: a comparative study. Journal of Materials Science: Materials in Electronics, 2018, 29, 5239-5252.	2.2	14
16	Structural characterization of SnS crystals formed by chemical vapour deposition. Journal of Microscopy, 2017, 268, 276-287.	1.8	12
17	Grain-Boundary-Induced Strain and Distortion in Epitaxial Bilayer MoS ₂ Lattice. Journal of Physical Chemistry C, 2020, 124, 6472-6478.	3.1	12
18	Chemical vapor deposition of monolayer-thin WS2 crystals from the WF6 and H2S precursors at low deposition temperature. Journal of Chemical Physics, 2019, 150, 104703.	3.0	11

ANKIT NALIN MEHTA

#	Article	IF	CITATIONS
19	Epitaxial registry and crystallinity of MoS2 via molecular beam and metalorganic vapor phase van der Waals epitaxy. Applied Physics Letters, 2020, 117, .	3.3	11
20	Fundamental limitation of van der Waals homoepitaxy by stacking fault formation in WSe ₂ . 2D Materials, 2020, 7, 025027.	4.4	11
21	Sources of variability in scaled MoS ₂ FETs. , 2020, , .		11
22	Active area dependence of optoelectronic characteristics of perovskite LEDs. Journal of Materials Chemistry C, 2021, 9, 12661-12670.	5.5	8