Sho Yoshimatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/343434/publications.pdf

Version: 2024-02-01

	1163117	1125743
207	8	13
citations	h-index	g-index
16	16	253
docs citations	times ranked	citing authors
	citations 16	207 8 citations h-index 16 16

#	Article	IF	CITATIONS
1	Pathological Progression Induced by the Frontotemporal Dementia-Associated R406W Tau Mutation in Patient-Derived iPSCs. Stem Cell Reports, 2019, 13, 684-699.	4.8	46
2	Robust and efficient knock-in in embryonic stem cells and early-stage embryos of the common marmoset using the CRISPR-Cas9 system. Scientific Reports, 2019, 9, 1528.	3.3	35
3	Non-viral Induction of Transgene-free iPSCs from Somatic Fibroblasts of Multiple Mammalian Species. Stem Cell Reports, 2021, 16, 754-770.	4.8	30
4	Establishment of induced pluripotent stem cells from common marmoset fibroblasts by RNA-based reprogramming. Biochemical and Biophysical Research Communications, 2019, 515, 593-599.	2.1	17
5	Naive-like ESRRB+ iPSCs with the Capacity for Rapid Neural Differentiation. Stem Cell Reports, 2017, 9, 1825-1838.	4.8	16
6	Primed to Naive-Like Conversion of the Common Marmoset Embryonic Stem Cells. Stem Cells and Development, 2020, 29, 761-773.	2.1	14
7	A versatile toolbox for knock-in gene targeting based on the Multisite Gateway technology. PLoS ONE, 2019, 14, e0221164.	2.5	10
8	Generation of a male common marmoset embryonic stem cell line DSY127-BV8VT1 carrying double reporters specific for the germ cell linage using the CRISPR-Cas9 and PiggyBac transposase systems. Stem Cell Research, 2020, 44, 101740.	0.7	9
9	Non-viral derivation of a transgene-free induced pluripotent stem cell line from a male beagle dog. Stem Cell Research, 2021, 53, 102375.	0.7	8
10	Direct Neuronal Reprogramming of Common Marmoset Fibroblasts by ASCL1, microRNA-9/9*, and microRNA-124 Overexpression. Cells, 2021, 10, 6.	4.1	8
11	Evaluating the efficacy of small molecules for neural differentiation of common marmoset ESCs and iPSCs. Neuroscience Research, 2020, 155, 1-11.	1.9	4
12	Generation of a control human induced pluripotent stem cell line using the defective and persistent Sendai virus vector system. Stem Cell Research, 2021, 56, 102549.	0.7	4
13	Establishing an induced pluripotent stem cell line from neonatal common marmoset fibroblasts by an all-in-one episomal vector approach. Stem Cell Research, 2021, 53, 102380.	0.7	2
14	Generation of a common marmoset embryonic stem cell line CMES40-OC harboring a POU5F1 (OCT4)-2A-mCerulean3 knock-in reporter allele. Stem Cell Research, 2021, 53, 102308.	0.7	2
15	Stepâ€byâ€step protocols for nonâ€viral derivation of transgeneâ€free induced pluripotent stem cells from somatic fibroblasts of multiple mammalian species. Development Growth and Differentiation, 2022, 64, 325-341.	1.5	2