AytuÄÖkumuÅŸ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3434219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorus–nitrogen compounds. Part 58. Syntheses, structural characterizations and biological activities of 4-fluorobenzyl-spiro(N/O)cyclotriphosphazene derivatives. Journal of Biomolecular Structure and Dynamics, 2023, 41, 298-318.	3.5	6
2	Phosphorus-nitrogen compounds. Part 56. Comparative syntheses and spectral properties of multiheterocyclic 2- <i>cis</i> -4-ansa and spiro-ferrocenyl (N/O)cyclotetraphosphazenes: Antituberculosis and antimicrobial activity and DNA interaction studies. Phosphorus, Sulfur and Silicon and the Related Elements, 2022, 197, 18-29.	1.6	6
3	Phosphorusâ€nitrogen compounds part 59. The syntheses of tetrachloro and tetraaminoâ€2â€pyridylmethylspiro(N/N)ethylenediaminocyclotriphosphazenes: Structural characterization, bioactivity, and molecular docking studies. Journal of the Chinese Chemical Society, 2022, 69, 310-331.	1.4	7
4	Phosphorus-nitrogen compounds. Part 62. Preparation of tetraaminobis(4-fluorobenzyl)spiro(N/N)cyclotriphosphazenes: Chemical, structural characterizations, antimicrobial, antioxidant and DNA-binding activity studies. Inorganica Chimica Acta, 2022, 538, 121001.	2.4	6
5	The comparative reactions of 2â€ <i>cis</i> â€4â€ansa and spiro cyclotetraphosphazenes with difunctional ligands: Structural and stereogenic properties, electrochemical, antimicrobial and cytotoxic activity studies. Applied Organometallic Chemistry, 2021, 35, e6150.	3.5	15
6	Phosphorus–nitrogen compounds. Part 54. syntheses of chiral amino-4-fluorobenzyl-spiro(N/O)cyclotriphosphazenes: structural and stereogenic properties. New Journal of Chemistry, 2021, 45, 12178-12192.	2.8	14
7	Phosphorus-nitrogen compounds- (Part 50): correlations between structuralparameters for cylophosphazene derivatives containing ferrocenyl pendant arm(s). Turkish Journal of Chemistry, 2020, 44, 543-558.	1.2	2
8	Phosphorus-nitrogen compounds (Part 51): the relationship betweenspectroscopic and crystallographic data of mono- and di-spirocyclophosphazenederivatives with 4-fluoro/nitrophenylmethyl pendant arm/arms. Turkish Journal of Chemistry, 2020, 44, 559-573.	1.2	1
9	Phosphorus-nitrogen compounds. Part 52. The reactions of octachlorocyclotetraphosphazene with sodium 3-(N-ferrocenylmethylamino)-1-propanoxide: Investigations of spectroscopic, crystallographic and stereogenic properties. Inorganica Chimica Acta, 2019, 497, 119106.	2.4	13
10	Phosphorus–nitrogen compounds. Part 42. The comparative syntheses of 2- <i>cis</i> -4-ansa(N/O) and spiro(N/O) cyclotetraphosphazene derivatives: spectroscopic and crystallographic characterization, antituberculosis and cytotoxic activity studies. New Journal of Chemistry, 2019, 43, 6856-6873.	2.8	23
11	Phosphorus-Nitrogen compounds part 47: The conventional and microwave-assisted syntheses of dispirocyclotriphosphazene derivatives with (4-fluoro/4-nitrobenzyl) pendant arms: Structural and stereogenic properties and DNA interactions. Inorganica Chimica Acta, 2019, 490, 179-189.	2.4	23
12	Phosphorus-nitrogen compounds. Part 44. The syntheses of N,N-spiro bridged cyclotriphosphazene derivatives with (4-fluorobenzyl) pendant arms: Structural and stereogenic properties, DNA interactions, antimicrobial and cytotoxic activities. Inorganica Chimica Acta, 2019, 486, 172-184.	2.4	28
13	Phosphorus-nitrogen compounds. Part 40. The syntheses of (4-fluorobenzyl) pendant armed cyclotetraphosphazene derivatives: Spectroscopic, crystallographic and stereogenic properties, DNA interactions and antimicrobial activities. Inorganica Chimica Acta, 2018, 476, 110-122.	2.4	25
14	Phosphorus–nitrogen compounds. Part 37. Syntheses and structural characterizations, biological activities of mono and bis(4-fluorobenzyl)spirocyclotetraphosphazenes. New Journal of Chemistry, 2017, 41, 5818-5835.	2.8	23
15	Phosphorus-nitrogen compounds. part 38. Syntheses, characterizations, cytotoxic, antituberculosis and antimicrobial activities and DNA interactions of spirocyclotetraphosphazenes with bis-ferrocenyl pendant arms. Journal of Organometallic Chemistry, 2017, 853, 93-106.	1.8	24
16	Antiproliferative Effects against A549, Hep3B and FL Cell Lines of Cyclotriphosphazeneâ€Based Novel Protic Molten Salts: Spectroscopic, Crystallographic and Thermal Results ChemistrySelect, 2017, 2, 4988-4999.	1.5	15
17	The reactions of N\$_{3}\$P\$_{3}\$Cl\$_{6}\$ with monodentate and bidentate ligands: the syntheses and structural characterizations, in vitro antimicrobial activities, and DNA interactions of 4-fluorobenzyl(N/O)spirocyclotriphosphazenes. Turkish Journal of Chemistry, 2017, 41, 525-547.	1.2	27
18	Phosphorus–nitrogen compounds. Part 35. Syntheses, spectroscopic and electrochemical properties, and antituberculosis, antimicrobial and cytotoxic activities of mono-ferrocenyl-spirocyclotetraphosphazenes. New Journal of Chemistry, 2016, 40, 5588-5603.	2.8	43

ΑγτυӒΫ ΟκυΜυÅΫ

#	Article	IF	CITATIONS
19	Phosphorus–nitrogen compounds. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1627-1641.	3.6	39
20	Phosphorus–nitrogen compounds part 33: in vitro cytotoxic and antimicrobial activities, DNA interactions, syntheses, and structural investigations of new mono(4-nitrobenzyl)spirocyclotriphosphazenes. Research on Chemical Intermediates, 2016, 42, 4221-4251.	2.7	27
21	THE SYNTHESES AND STRUCTURAL CHARACTERIZATIONS, ANTIMICROBIAL ACTIVITY AND IN VITRO DNA BINDING OF 4-FLUOROBENZYLSPIRO(N/O)CYCLOTRIPHOSPHAZENES AND THEIR PHOSPHAZENIUM SALTS. Journal of the Turkish Chemical Society, Section A: Chemistry, 2016, 3, .	1.1	14
22	Syntheses, structural characterization and biological activities of spiro-ansa-spiro-cyclotriphosphazenes. New Journal of Chemistry, 2015, 39, 8825-8839.	2.8	42
23	Phosphorus–nitrogen compounds. Part 29. Syntheses, crystal structures, spectroscopic and stereogenic properties, electrochemical investigations, antituberculosis, antimicrobial and cytotoxic activities and DNA interactions of ansa-spiro-ansa cyclotetraphosphazenes. European Journal of Medicinal Chemistry. 2014. 87. 662-676.	5.5	41
24	Phosphorus–nitrogen compounds part 27. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing secondary amino and pendant (4-fluorobenzyl)spiro groups. European Journal of Medicinal Chemistry, 2013, 70, 294-307.	5.5	71
25	Syntheses, spectroscopic properties, crystal structures, biological activities, and DNA interactions of heterocyclic amine substituted spiro-ansa-spiro- and spiro-bino-spiro-phosphazenes. Inorganica Chimica Acta, 2013, 406, 160-170.	2.4	25
26	Biofuel Cell Based on Anode and Cathode Modified by Glucose Oxidase. Electroanalysis, 2013, 25, 2677-2683.	2.9	47
27	Phosphorus–Nitrogen Compounds. Part 24. Syntheses, Crystal Structures, Spectroscopic and Stereogenic Properties, Biological Activities, and DNA Interactions of Novel Spiro-ansa-spiro- and Ansa-spiro-ansa-cyclotetraphosphazenes. Inorganic Chemistry, 2012, 51, 12841-12856.	4.0	39
28	Phenanthroline derivatives electrochemically grafted to glassy carbon for Cu(II) ion detection. Sensors and Actuators B: Chemical, 2012, 166-167, 117-127.	7.8	36
29	Phosphorus–nitrogen compounds part 22. Syntheses, structural investigations, biological activities and DNA interactions of new mono and bis (4-fluorobenzyl) spirocyclophosphazenes. Polyhedron, 2011, 30, 2896-2907.	2.2	40
30	Phosphorus–nitrogen compounds. Part 20: Fully substituted spiro-cyclotriphosphazenic lariat (PNP-pivot) ether derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 76, 401-409.	3.9	31
31	Phosphorus–nitrogen compounds: part 16. Synthesis, stereogenism, anisochronism and the relationship between 31P NMR spectral and crystallographic data of monotopic spiro-crypta phosphazene derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 65, 269-286	1.6	25
32	Crystal Structure of 18,19-Dihydro-8,8-dipyrrolidine-1-yl-6.LAMBDA.5, 8.LAMBDA.5, 10.LAMBDA.5-6,10-nitrilo-16H, 21H-[1,3,5,7,2,4,6]tetraazatriphosphonino[2,1-b:6,7-b']bis-[1,3,2]benzoxazaphosphorine. Analytical Sciences: X-ray Structure Analysis Online, 2007, 23, X121-X122.	0.1	1
33	Phosphorusâ `Nitrogen Compounds. Part 13. Syntheses, Crystal Structures, Spectroscopic, Stereogenic, and Anisochronic Properties of Novel Spiro-Ansa-Spiro-, Spiro-Bino-Spiro-, and Spiro-Crypta Phosphazene Derivatives. Inorganic Chemistry, 2006, 45, 8755-8767.	4.0	46
34	The Spectroscopic and Thermal Properties, Antimicrobial Activities and DNA Interactions of 4-(Fluorobenzyl)Spiro(N/O) Cyclotriphosphazenium Salts. Journal of the Turkish Chemical Society, Section A: Chemistry, 0, , 993-1016.	1.1	19