Davide Comoretto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3433594/publications.pdf

Version: 2024-02-01

170 papers 3,286 citations

147786 31 h-index 197805 49 g-index

175 all docs

175 docs citations

175 times ranked

2884 citing authors

#	Article	IF	CITATIONS
1	(INVITED)Planar microcavities: Materials and processing for light control. Optical Materials: X, 2022, 13, 100130.	0.8	5
2	2,5-Diisopropenylthiophene by Suzuki–Miyaura cross-coupling reaction and its exploitation in inverse vulcanization: a case study. RSC Advances, 2022, 12, 8924-8935.	3.6	3
3	Multilayer Polymer Photonic Aegises Against Near-Infrared Solar Irradiation Heating. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14550-14560.	8.0	11
4	Mild Sol–Gel Conditions and High Dielectric Contrast: A Facile Processing toward Large-Scale Hybrid Photonic Crystals for Sensing and Photocatalysis. ACS Applied Materials & Dieffaces, 2022, 14, 19806-19817.	8.0	17
5	All-Polymer Microcavities for the Fluorescence Radiative Rate Modification of a Diketopyrrolopyrrole Derivative. ACS Omega, 2022, 7, 15499-15506.	3.5	7
6	The Electrical Response of Real Dielectrics: Using the Voltage Ramp Method as a Straightforward Diagnostic Tool for Polymeric Composites. Materials, 2022, 15, 3829.	2.9	0
7	Universal Design Rules for Flory–Huggins Polymer Photonic Vapor Sensors. Advanced Functional Materials, 2021, 31, 2009626.	14.9	15
8	Aquivion–Poly(<i>N</i> àê€vinylcarbazole) Holistic Flory–Huggins Photonic Vapor Sensors. Advanced Optical Materials, 2021, 9, 2002006.	7.3	19
9	Photonic Vapor Sensors: Universal Design Rules for Flory–Huggins Polymer Photonic Vapor Sensors (Adv. Funct. Mater. 9/2021). Advanced Functional Materials, 2021, 31, 2170062.	14.9	0
10	Aquivion–Poly(<i>N</i> â€vinylcarbazole) Holistic Flory–Huggins Photonic Vapor Sensors (Advanced) Tj ETQ	q0.0.0 rgE 7.3	BT /Overlock 1
11	Effect of sodium alginate molecular structure on electrospun membrane cell adhesion. Materials Science and Engineering C, 2021, 124, 112067.	7.3	27
12	Thin Polymer Films: Simple Optical Determination of Molecular Diffusion Coefficients. ACS Applied Polymer Materials, 2020, 2, 563-568.	4.4	14
13	Reshaping Hybrid Perovskites Emission with Flexible Polymer Microcavities. EPJ Web of Conferences, 2020, 230, 00006.	0.3	O
14	Strategies for Dielectric Contrast Enhancement in 1D Planar Polymeric Photonic Crystals. Applied Sciences (Switzerland), 2020, 10, 4122.	2.5	22
15	High Refractive Index Inverse Vulcanized Polymers for Organic Photonic Crystals. Crystals, 2020, 10, 154.	2.2	12
16	Sodium Alginate Cross-Linkable Planar 1D Photonic Crystals as a Promising Tool for Pb2+ Detection in Water. Chemosensors, 2020, 8, 37.	3.6	9
17	Shine Bright Like a Diamond: New Light on an Old Polymeric Semiconductor. Advanced Materials, 2020, 32, e1908140.	21.0	57
18	All-polymer Planar Photonic Crystals as an Innovative Tool for the Analysis of Air. EPJ Web of Conferences, 2020, 230, 00007.	0.3	0

#	Article	IF	CITATIONS
19	Core–shell silica–rhodamine B nanosphere for synthetic opals: from fluorescence spectral redistribution to sensing. RSC Advances, 2020, 10, 14958-14964.	3.6	5
20	Polymeric Planar Microcavities Doped with a Europium Complex. Crystals, 2020, 10, 287.	2.2	8
21	Luminescent solar concentrators: boosted optical efficiency by polymer dielectric mirrors. Materials Chemistry Frontiers, 2019, 3, 429-436.	5.9	52
22	Floryâ€"Huggins Photonic Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. ACS Applied Materials & Diffusion Coefficients in Polymers. ACS Applied Mate	8.0	36
23	All-polymer methylammonium lead iodide perovskite microcavities. Nanoscale, 2019, 11, 8978-8983.	5.6	30
24	A new method for the determination of molecular diffusion coefficient in polymer films by simple UV-VIS spectroscopy. AIP Conference Proceedings, 2019, , .	0.4	0
25	Solution Processed Polymer-ABX4 Perovskite-Like Microcavities. Applied Sciences (Switzerland), 2019, 9, 5203.	2.5	8
26	Tailoring the properties of polymers for photonic applications with optical nanocomposites. AIP Conference Proceedings, 2019, , .	0.4	0
27	Lasing from dot-in-rod nanocrystals in planar polymer microcavities. RSC Advances, 2018, 8, 13026-13033.	3.6	28
28	Engineering the Emission of Broadband 2D Perovskites by Polymer Distributed Bragg Reflectors. ACS Photonics, 2018, 5, 867-874.	6.6	38
29	C-Si hybrid photonic structures by full infiltration of conjugated polymers into porous silicon rugate filters. Nanomaterials and Nanotechnology, 2018, 8, 184798041878840.	3.0	4
30	Black GaAs by Metal-Assisted Chemical Etching. ACS Applied Materials & Interfaces, 2018, 10, 33434-33440.	8.0	21
31	Label-free vapor selectivity by polymer-inorganic composite photonic crystals sensors. AIP Conference Proceedings, 2018, , .	0.4	6
32	Colorimetric Detection of Perfluorinated Compounds by All-Polymer Photonic Transducers. ACS Omega, 2018, 3, 7517-7522.	3.5	31
33	Advances in Functional Solution Processed Planar 1D Photonic Crystals. Advanced Optical Materials, 2018, 6, 1800730.	7.3	145
34	Photo-induced absorption spectra of a poly(p-phenylenevinylene) polymer with fluorinated double bonds. Organic Electronics, 2017, 43, 214-221.	2.6	5
35	Directional Fluorescence Spectral Narrowing in All-Polymer Microcavities Doped with CdSe/CdS Dot-in-Rod Nanocrystals. ACS Photonics, 2017, 4, 1761-1769.	6.6	42
36	Allâ€Polymer Photonic Microcavities Doped with Perylene Bisimide Jâ€Aggregates. Advanced Optical Materials, 2017, 5, 1700523.	7.3	51

3

#	Article	IF	Citations
37	Directional fluorescence shaping and lasing in all-polymer microcavities doped with CdSe/CdS dot-in-rod nanocrystals. , 2017, , .		1
38	Photocatalyzed synthesis of isochromanones and isobenzofuranones under batch and flow conditions. Beilstein Journal of Organic Chemistry, 2017, 13, 1456-1462.	2.2	9
39	Synthesis of Fluorescent Core-Shell Metal Nanohybrids: A Versatile Approach. Materials, 2016, 9, 997.	2.9	5
40	Demonstration of fluorescence enhancement via Bloch surface waves in all-polymer multilayer structures. Physical Chemistry Chemical Physics, 2016, 18, 14086-14093.	2.8	46
41	High refractive index hyperbranched polyvinylsulfides for planar oneâ€dimensional allâ€polymer photonic crystals. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 73-80.	2.1	41
42	Cellulose ternary photonic crystal created by solution processing. Cellulose, 2016, 23, 2853-2862.	4.9	37
43	A Multiâ€optical Collector of Sunlight Employing Luminescent Materials and Photonic Nanostructures. Advanced Optical Materials, 2016, 4, 147-155.	7.3	14
44	Label-Free Vapor Selectivity in Poly($\langle i \rangle p \langle i \rangle$ -Phenylene Oxide) Photonic Crystal Sensors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31941-31950.	8.0	93
45	In-plane anisotropic photoresponse in all-polymer planar microcavities. Polymer, 2016, 84, 383-390.	3.8	16
46	SERS Amplification from Self-Organized Arrays of Plasmonic Nanocrescents. ACS Applied Materials & Sers Amp; Interfaces, 2016, 8, 6629-6638.	8.0	32
47	Polymer Distributed Bragg Reflectors for Vapor Sensing. ACS Photonics, 2015, 2, 537-543.	6.6	100
48	High definition conductive carbon films from solution processing of nitrogen-containing oligomers. Carbon, 2015, 94, 1044-1051.	10.3	3
49	Spin-Coated Polymer and Hybrid Multilayers and Microcavities. , 2015, , 77-101.		7
50	Hybrid ZnO:polystyrene nanocomposite for allâ€polymer photonic crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 158-162.	0.8	30
51	Tailoring of linear response from plasmonic nano-resonators grown on a polystyrene. , 2014, , .		0
52	Fluorescence excitation enhancement by Bloch surface wave in all-polymer one-dimensional photonic structure. Applied Physics Letters, 2014, 105 , .	3.3	30
53	Second Harmonic Generation: Second Harmonic Generation Circular Dichroism from Self-Ordered Hybrid Plasmonic-Photonic Nanosurfaces (Advanced Optical Materials 3/2014). Advanced Optical Materials, 2014, 2, 207-207.	7.3	2
54	Lasing from all-polymer microcavities. Laser Physics Letters, 2014, 11, 035804.	1.4	65

#	Article	IF	Citations
55	Tailoring of the circular dichroism produced by Au covered self-ordered dielectric nanospheres. Proceedings of SPIE, 2014, , .	0.8	2
56	Strong coupling between excitons in organic semiconductors and Bloch surface waves. Applied Physics Letters, 2014, 104, 051111.	3.3	43
57	Photochromic and photomechanical responses of an amorphous diarylethene-based polymer: a spectroscopic ellipsometry investigation of ultrathin films. Journal of Materials Chemistry C, 2014, 2, 4692-4698.	5.5	25
58	Room temperature Bloch surface wave polaritons. , 2014, , .		0
59	Distributed Bragg reflectors: Morphology of cellulose acetate and polystyrene multilayers. , 2014, , .		6
60	Second Harmonic Generation Circular Dichroism from Selfâ€Ordered Hybrid Plasmonic–Photonic Nanosurfaces. Advanced Optical Materials, 2014, 2, 208-213.	7.3	46
61	Hybrid Plasmonic–Photonic Nanostructures: Gold Nanocrescents Over Opals. Advanced Optical Materials, 2013, 1, 389-396.	7.3	44
62	Measurement of the circular dichroism in the second harmonic optical signal produced by Au covered self ordered dielectric nanospheres. , $2013, , .$		4
63	Fluorescent polystyrene photonic crystals self-assembled with water-soluble conjugated polyrotaxanes. APL Materials, 2013, 1, .	5.1	15
64	Photoactive spherical colloids for opal photonic crystals. Polymer Composites, 2013, 34, 1443-1450.	4.6	7
65	Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres. Journal of Nanomaterials, 2012, 2012, 1-15.	2.7	12
66	Preparation, properties and self-assembly behavior of PTFE based core-shell nanospheres. AIP Conference Proceedings, 2012, , .	0.4	3
67	PTFE–PMMA core–shell colloidal particles as building blocks for selfâ€assembled opals: synthesis, properties and optical response. Polymer International, 2012, 61, 1294-1301.	3.1	32
68	Directional Enhancement of Spontaneous Emission in Polymer Flexible Microcavities. Journal of Physical Chemistry C, 2011, 115, 19939-19946.	3.1	56
69	Directional Photoluminescence Enhancement in Organic Flexible Microcavities. , 2011, , .		0
70	Polarized pressure dependence of the anisotropic dielectric functions of highly oriented poly(p-phenylene vinylene). Journal of Applied Physics, 2010, 107, 073106.	2.5	6
71	Spectroscopic Investigation of Artificial Opals Infiltrated with a Heteroaromatic Quadrupolar Dye. Journal of Physical Chemistry C, 2010, 114, 2403-2413.	3.1	30
72	Highly oriented poly(paraphenylene vinylene): Polarized optical spectroscopy under pressure. Physical Review B, 2009, 79, .	3.2	19

#	Article	IF	CITATIONS
73	Raman Spectra of Poly(<i>p</i> pi>â€phenylenevinylene)s with Fluorinated Vinylene Units: Evidence of Interâ€ring Distortion. ChemPhysChem, 2009, 10, 1284-1290.	2.1	23
74	Amplified spontaneous emission from opal photonic crystals engineered with structural defects. Physical Chemistry Chemical Physics, 2009, 11, 11515.	2.8	18
75	Light Localization Effect on the Optical Properties of Opals Doped with Gold Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 6293-6298.	3.1	40
76	In situ tuning of a photonic band gap with laser pulses. Applied Physics Letters, 2008, 93, 091111.	3.3	12
77	Emission properties of artificial opals infiltrated with a heteroaromatic quadrupolar dye. , 2008, , .		2
78	One Dimensional Polymeric Organic Photonic Crystals for DFB Lasers. International Journal of Photoenergy, 2008, 2008, 1-4.	2.5	33
79	Anisotropic photoluminescence properties of oriented poly(p-phenylene-vinylene) films: Effects of dispersion of optical constants. Physical Review B, 2007, 75, .	3.2	34
80	Colloidal Photonic Crystals Doped with Gold Nanoparticles: Spectroscopy and Optical Switching Properties. Advanced Functional Materials, 2007, 17, 2779-2786.	14.9	102
81	Interchain interactions in charged diacetylenic oligomers carrying bulk substituents revisited. Materials Science and Engineering C, 2006, 26, 1044-1048.	7.3	0
82	Optical effects in artificial opals infiltrated with gold nanoparticles. , 2006, , .		4
82	Optical effects in artificial opals infiltrated with gold nanoparticles., 2006,,. Interferometric determination of the anisotropic refractive index dispersion of poly-(p-phenylene-vinylene). Applied Physics Letters, 2005, 86, 201119.	3.3	13
	Interferometric determination of the anisotropic refractive index dispersion of	3.3	
83	Interferometric determination of the anisotropic refractive index dispersion of poly-(p-phenylene-vinylene). Applied Physics Letters, 2005, 86, 201119. Influence of Interchain Interactions on the Electronic Properties of Neutral and Charged		13
83	Interferometric determination of the anisotropic refractive index dispersion of poly-(p-phenylene-vinylene). Applied Physics Letters, 2005, 86, 201119. Influence of Interchain Interactions on the Electronic Properties of Neutral and Charged Oligodiacetylenes Carrying Bulk Substituents. Journal of Physical Chemistry B, 2005, 109, 5485-5490. Polarized optical and photoluminescence properties of highly oriented poly(p-phenylene-vinylene).	2.6	13
83 84 85	Interferometric determination of the anisotropic refractive index dispersion of poly-(p-phenylene-vinylene). Applied Physics Letters, 2005, 86, 201119. Influence of Interchain Interactions on the Electronic Properties of Neutral and Charged Oligodiacetylenes Carrying Bulk Substituents. Journal of Physical Chemistry B, 2005, 109, 5485-5490. Polarized optical and photoluminescence properties of highly oriented poly(p-phenylene-vinylene). Synthetic Metals, 2005, 153, 281-284.	2.6	13 4 6
83 84 85 86	Interferometric determination of the anisotropic refractive index dispersion of poly-(p-phenylene-vinylene). Applied Physics Letters, 2005, 86, 201119. Influence of Interchain Interactions on the Electronic Properties of Neutral and Charged Oligodiacetylenes Carrying Bulk Substituents. Journal of Physical Chemistry B, 2005, 109, 5485-5490. Polarized optical and photoluminescence properties of highly oriented poly(p-phenylene-vinylene). Synthetic Metals, 2005, 153, 281-284. Band structure and optical properties of opal photonic crystals. Physical Review B, 2005, 72, . Self-Organization of Polystyrenes into Ordered Microstructured Films and Their Replication by Soft	2.6 3.9 3.2	13 4 6 98
83 84 85 86	Interferometric determination of the anisotropic refractive index dispersion of poly-(p-phenylene-vinylene). Applied Physics Letters, 2005, 86, 201119. Influence of Interchain Interactions on the Electronic Properties of Neutral and Charged Oligodiacetylenes Carrying Bulk Substituents. Journal of Physical Chemistry B, 2005, 109, 5485-5490. Polarized optical and photoluminescence properties of highly oriented poly(p-phenylene-vinylene). Synthetic Metals, 2005, 153, 281-284. Band structure and optical properties of opal photonic crystals. Physical Review B, 2005, 72, . Self-Organization of Polystyrenes into Ordered Microstructured Films and Their Replication by Soft Lithography. Langmuir, 2005, 21, 3480-3485.	2.6 3.9 3.2	13 4 6 98 165

#	Article	IF	Citations
91	Optical Properties of Polystyrene Opals Infiltrated with Cyanine Dyes in the form of J-Aggregates. Materials Research Society Symposia Proceedings, 2004, 846, DD12.11.1.	0.1	O
92	Theoretical Investigation of the Charge Injection Effects on the Electronic Properties of Substituted Oligodiacetylenes. Journal of Physical Chemistry B, 2004, 108, 11291-11300.	2.6	4
93	Spectroscopical and photophysical investigations on polydiacetylenes with different ordering of the A g and B u excited states. , 2004, , .		O
94	Morphology, band structure, and optical properties of artificial opals., 2004, 5511, 135.		4
95	Polarized photoluminescence of highly oriented poly(p-phenylene-vinylene)., 2004,,.		2
96	Growth and optical studies of opal films as three-dimensional photonic crystals. Materials Science and Engineering C, 2003, 23, 61-65.	7.3	25
97	Interchain interactions in oligodiacetylene aggregates. Synthetic Metals, 2003, 137, 877-879.	3.9	2
98	Photoinduced absorption spectra in polydiacetylenes for non linear optical applications. Synthetic Metals, 2003, 138, 75-78.	3.9	4
99	The photophysics of triplet excitons in substituted polycarbazolyldiacetylenes. Synthetic Metals, 2003, 139, 889-892.	3.9	1
100	Morphology and optical properties of bare and polydiacetylenes-infiltrated opals. Synthetic Metals, 2003, 139, 633-636.	3.9	6
101	Optical and Spectroscopic Properties of Conjugated Polymers. Springer Series in Materials Science, 2003, , 57-90.	0.6	1
102	Optical and electronic properties of neutral and charged oligodiacetylene clustersPresented at the LANMAT 2001 Conference on the Interaction of Laser Radiation with Matter at Nanoscopic Scales: From Single Molecule Spectroscopy to Materials Processing, Venice, 3–6 October, 2001 Physical Chemistry Chemical Physics, 2002, 4, 2754-2761.	2.8	14
103	Polydiacetylenes for photonic application: chemical modulation of optical properties. Synthetic Metals, 2002, 127, 71-74.	3.9	8
104	Third order optical characterisation of a π-conjugated polydiacetylene by Maker fringes technique. Synthetic Metals, 2002, 127, 143-146.	3.9	37
105	Nonlinear optical response of a polycarbazolyldiacetylene film through femtosecond two-photon spectroscopy. Chemical Physics Letters, 2002, 363, 492-497.	2.6	10
106	Dielectric, Raman, calorimetric and X-ray diffraction studies of a polycarbazolyldiacetylene. Synthetic Metals, 2001, 116, 207-211.	3.9	2
107	Sub-10 fs excited state evolution in polycarbazolyldiacetylene–polyethylene blends. Synthetic Metals, 2001, 116, 57-60.	3.9	10
108	Experimental and theoretical studies of the anisotropical complex dielectric constant of highly stretch-oriented poly(p-phenylene-vinylene). Synthetic Metals, 2001, 116, 107-110.	3.9	5

#	Article	IF	Citations
109	Optical properties of films of polycarbazolyldiacetylene PDCHD-HS for photonic applications. Synthetic Metals, 2001, 116, 129-133.	3.9	13
110	Theoretical absorption spectra of charged oligodiacetylenes. Synthetic Metals, 2001, 119, 611-612.	3.9	4
111	The anisotropical optical spectra of highly stretch-oriented poly(p-phenylene-vinylene). Synthetic Metals, 2001, 119, 643-644.	3.9	4
112	Optical and electronic properties of thin PDAs films with very narrow excitonic bandwidth. Synthetic Metals, 2001, 119, 565-566.	3.9	3
113	Optical properties of highly oriented poly(p-phenylene-vinylene). Synthetic Metals, 2001, 124, 53-58.	3.9	15
114	Theoretical calculations of the geometries and of the lowest optical transitions of singly and doubly charged oligodiacetylenes. Synthetic Metals, 2001, 124, 179-181.	3.9	9
115	Orientation of thin films of conjugated systems by different techniques. Synthetic Metals, 2001, 124, 233-235.	3.9	2
116	Soluble polydiacetylenes: molecular properties and solid state organization. Synthetic Metals, 2001, 124, 253-255.	3.9	3
117	Solution spectroscopic properties of polyDCHD-HS: a novel highly soluble polydiacetylene. Perkin Transactions II RSC, 2001, , 146-152.	1.1	17
118	Two-Photon Spectroscopy of π-Conjugated Polymers:  The Case of Poly[1,6-bis(3,6-dihexadecyl-N-carbazolyl)-2,4-hexadiyne] (PolyDCHD-HS). Journal of Physical Chemistry A, 2001, 105, 7759-7764.	2.5	21
119	Orientation of Polydiacetylene and Poly(p-phenylene ethynylene) Films by Epitaxy and Rubbing. Macromolecules, 2001, 34, 7091-7099.	4.8	27
120	Optical Studies of Artificial Opals as 3D Photonic Crystals. Materials Research Society Symposia Proceedings, 2001, 708, 10191.	0.1	0
121	Triplet-Exciton Generation Mechanism in a New Soluble (Red-Phase) Polydiacetylene. Physical Review Letters, 2001, 87, .	7.8	71
122	Chemical modulation of the electronic properties of polydiacetylenes. Journal of Molecular Structure, 2000, 521, 157-166.	3.6	12
123	Optical constants of highly stretch-oriented poly(p-phenylene-vinylene): A joint experimental and theoretical study. Physical Review B, 2000, 62, 10173-10184.	3.2	63
124	Films of a novel polydiacetylene for photonics studies. Synthetic Metals, 2000, 115, 275-277.	3.9	5
125	Linear and nonlinear characterization of polyDCHD-HS films. Synthetic Metals, 2000, 115, 257-260.	3.9	17
126	Solvation Effects and Inhomogeneous Broadening in Optical Spectra of Phenol Blue. Journal of Physical Chemistry A, 2000, 104, 11049-11054.	2.5	62

#	Article	IF	CITATIONS
127	Supramolecular organization in the solid state of a novel soluble polydiacetylene. Liquid Crystals, 1999, 26, 1437-1444.	2.2	31
128	The spin signature of charged photoexcitations in carbazolyl substituted polydiacetylene. Journal of Chemical Physics, 1999, 111, 10354-10361.	3.0	7
129	Triplet exciton generation and decay in a red polydiacetylene studied by femtosecond spectroscopy. Chemical Physics Letters, 1999, 313, 525-532.	2.6	43
130	Photoexcitations in carbazolyl substituted polydiacetylene (PDA) fullerene composites. Synthetic Metals, 1999, 101, 298-299.	3.9	3
131	Excited states of polydiacetylene oligomers. Synthetic Metals, 1999, 102, 1414-1415.	3.9	7
132	New evidence of long-lived photoexcited charged states in thin films of PDA-4BCMU. Synthetic Metals, 1999, 102, 941-942.	3.9	1
133	A novel processable polydiacetylene for photonics studies. Synthetic Metals, 1999, 102, 943-944.	3.9	10
134	Dielectric studies on conjugated polymers. Synthetic Metals, 1999, 101, 467-468.	3.9	3
135	Singlet Fission in Luminescent and Nonluminescent II-conjugated Polymers. Synthetic Metals, 1999, 101, 267-268.	3.9	24
136	Quantum Chemical Calculations of the Electronic States and Fluorescence Properties of Carbazolyland Carbazolylmethylene-Substituted Diacetylenes. Journal of Physical Chemistry A, 1999, 103, 2857-2860.	2.5	7
137	<title>Nature of long-lived photoexcited states in polydiacetylenes: the photoinduced absorption spectra of PDA-4BCMU</title> ., 1999, 3725, 122.		0
138	Polarized reflectivity spectra of stretch-oriented poly(p-phenylene-vinylene). Chemical Physics Letters, 1998, 289, 1-7.	2.6	31
139	Photoinduced absorption spectra of poly[1,6-di(N-carbazolyl)-2,4-hexadiyne] (polyDCHD) by excitation on the carbazole group. Synthetic Metals, 1998, 94, 229-234.	3.9	11
140	Polarization properties of a novel oriented polydiacetylene. Synthetic Metals, 1998, 95, 47-52.	3.9	10
141	Vibrational properties of novel diacetylenic monomers. Journal of the Chemical Society Perkin Transactions II, 1998, , 2249-2254.	0.9	8
142	Long-lived photoexcited states in polydiacetylenes: $\hat{a} \in f$ The photoinduced-absorption spectra of PDA-4BCMU. Physical Review B, 1998, 57, 7071-7078.	3.2	18
143	Photoexcitations of polycarbazolyldiacetylenes in different time domains. , 1997, , .		4
144	Long-lived photoexcited states in polydiacetylenes with different molecular and supramolecular organization. Physical Review B, 1997, 56, 10264-10270.	3.2	20

#	Article	IF	Citations
145	Optical properties of potassium acid phthalate. Journal of Materials Research, 1997, 12, 1262-1267.	2.6	17
146	Mechanism of carrier generation in conducting polymers. Synthetic Metals, 1997, 84, 539-544.	3.9	13
147	Fast Transient "Photoconductivity―in Semiconducting Polymers: Free Carrier Photocurrent or Displacement Current Generated by Electric-Field-Induced Polarization of Bound Excitons?. Synthetic Metals, 1997, 84, 559-562.	3.9	12
148	Characterization of poly(3-decylmethoxythiophene) multilayers. Thin Solid Films, 1997, 299, 169-172.	1.8	9
149	Optical properties of epitaxially grown poly[1,6-di(N-carbazolyl)-2,4-hexadiyne]. Solid State Communications, 1997, 102, 485-488.	1.9	2
150	Photoexcited states in epitaxially oriented polydiacetylene films. Synthetic Metals, 1996, 76, 27-29.	3.9	9
151	Preparation and characterization of 14-[3,6-(didodecyl)-N-carbazolyl]tetradeca-10,12-diynoic acid LB multilayers. Thin Solid Films, 1996, 284-285, 36-38.	1.8	5
152	Synthesis and optical properties of a novel soluble polycarbazolyldiacetylene. Macromolecular Chemistry and Physics, 1996, 197, 1241-1253.	2.2	27
153	Photoinduced absorption of oriented poly[1,6-di(N-carbazolyl)-2,4-hexadiyne]. Physical Review B, 1996, 53, 15653-15659.	3.2	23
154	Effect of interchain separation on the photoinduced absorption spectra of polycarbazolyldiacetylenes. Physical Review B, 1996, 54, 16357-16360.	3.2	15
155	Ultrafast exciton dynamics in highly oriented polydiacetylene films. Applied Physics Letters, 1994, 65, 590-592.	3.3	52
156	Optical properties and long-lived charged photoexcitations in polydiacetylenes. Physical Review B, 1994, 49, 8059-8066.	3.2	27
157	Photoexcitation studies in poly[1,6-di(N-carbazolyl)-2,4-hexadiyne]. Correlation of spectral features with the degree of order in polycrystalline samples. Synthetic Metals, 1994, 68, 33-37.	3.9	10
158	Photoexcitations in Polydiacetylenes. , 1994, , 197-204.		0
159	Femtosecond transient bleaching decay in poly(alkyl-thiophene-vinylene)s in solution and in film. Solid State Communications, 1993, 86, 583-588.	1.9	5
160	Photoexcitations in polycarbazolyldiacetylenes in different time regimes. Synthetic Metals, 1993, 57, 5081-5087.	3.9	4
161	Electronic and geometric defects in doped PPS oligomers. Synthetic Metals, 1993, 57, 4813-4819.	3.9	1
162	Optical properties and long-lived carrier generation efficiency in oriented polyacetylene. Synthetic Metals, 1993, 55, 115-120.	3.9	0

#	Article	IF	CITATIONS
163	Long-lived photoexcited states in symmetrical polydicarbazolyldiacetylene. Physical Review B, 1993, 48, 7850-7856.	3.2	66
164	Long-Lived Defects In Polycarbazolyld1 Acetylenes. Photoinduced Vis And Infrared Spectra. Materials Research Society Symposia Proceedings, 1993, 328, 739.	0.1	0
165	Interchain interactions in polyacetylene: Optical properties and photoconductive response. Physical Review B, 1992, 46, 10041-10047.	3.2	20
166	Photoexcitations in polycarbazolyldiacetylenes. Physical Review B, 1992, 45, 6802-6808.	3.2	20
167	Optical properties and photoinduced absorptions in unsymmetrical polycarbazolydiacetylenes. Synthetic Metals, 1992, 51, 239-244.	3.9	14
168	Pump polarization anisotropy with above and below gap excitation in oriented (CH)x. Synthetic Metals, 1991, 43, 3515-3519.	3.9	2
169	Optical properties of highly oriented fibrous polyacetylene. Physical Review B, 1990, 41, 3534-3539.	3.2	14
170	Tuning optical properties of opal photonic crystals by structural defects engineering. Journal of the European Optical Society-Rapid Publications, 0, 4, .	1.9	5