Ludger Johannes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3433467/publications.pdf Version: 2024-02-01

		13865	15732
205	17,476	67	125
papers	citations	h-index	g-index
215	215	215	18410
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cells Respond to Mechanical Stress by Rapid Disassembly of Caveolae. Cell, 2011, 144, 402-413.	28.9	791
2	Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity, 2016, 45, 931-943.	14.3	645
3	PD-1–Expressing Tumor-Infiltrating T Cells Are a Favorable Prognostic Biomarker in HPV-Associated Head and Neck Cancer. Cancer Research, 2013, 73, 128-138.	0.9	554
4	Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature, 2007, 450, 670-675.	27.8	538
5	GM1 structure determines SV40-induced membrane invagination and infection. Nature Cell Biology, 2010, 12, 11-18.	10.3	535
6	Protein interaction mapping: A Drosophila case study. Genome Research, 2005, 15, 376-384.	5.5	509
7	Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. Journal of Cell Biology, 2002, 156, 653-664.	5.2	479
8	Shiga toxins — from cell biology to biomedical applications. Nature Reviews Microbiology, 2010, 8, 105-116.	28.6	449
9	Galectins at a glance. Journal of Cell Science, 2018, 131, .	2.0	423
10	Direct Pathway from Early/Recycling Endosomes to the Golgi Apparatus Revealed through the Study of Shiga Toxin B-fragment Transport. Journal of Cell Biology, 1998, 143, 973-990.	5.2	406
11	Rab6 Coordinates a Novel Golgi to ER Retrograde Transport Pathway in Live Cells. Journal of Cell Biology, 1999, 147, 743-760.	5.2	384
12	Rab11 Regulates the Compartmentalization of Early Endosomes Required for Efficient Transport from Early Endosomes to the Trans-Golgi Network. Journal of Cell Biology, 2000, 151, 1207-1220.	5.2	368
13	Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nature Cell Biology, 1999, 1, 423-430.	10.3	336
14	Tracing the Retrograde Route in Protein Trafficking. Cell, 2008, 135, 1175-1187.	28.9	330
15	Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature, 2015, 517, 493-496.	27.8	276
16	Targeting of Shiga Toxin B-Subunit to Retrograde Transport Route in Association with Detergent-resistant Membranes. Molecular Biology of the Cell, 2001, 12, 2453-2468.	2.1	264
17	Inhibition of Retrograde Transport Protects Mice from Lethal Ricin Challenge. Cell, 2010, 141, 231-242.	28.9	258
18	Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nature Cell Biology, 2014, 16, 592-603.	10.3	248

#	Article	IF	CITATIONS
19	Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nature Communications, 2017, 8, 15221.	12.8	231
20	Actin Dynamics Drive Membrane Reorganization and Scission in Clathrin-Independent Endocytosis. Cell, 2010, 140, 540-553.	28.9	226
21	The enemy within us: lessons from the 2011 European <i>Escherichia coli</i> O104:H4 outbreak. EMBO Molecular Medicine, 2012, 4, 841-848.	6.9	215
22	Clathrin Adaptor epsinR Is Required for Retrograde Sorting on Early Endosomal Membranes. Developmental Cell, 2004, 6, 525-538.	7.0	213
23	The 2018 biomembrane curvature and remodeling roadmap. Journal Physics D: Applied Physics, 2018, 51, 343001.	2.8	212
24	Clathrin-Dependent or Not: Is It Still the Question?. Traffic, 2002, 3, 443-451.	2.7	208
25	Mucosal Imprinting of Vaccine-Induced CD8 ⁺ T Cells Is Crucial to Inhibit the Growth of Mucosal Tumors. Science Translational Medicine, 2013, 5, 172ra20.	12.4	195
26	Noninvasive measurement of the pH of the endoplasmic reticulum at rest and during calcium release. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2997-3002.	7.1	185
27	Lowe Syndrome Protein OCRL1 Interacts with Clathrin and Regulates Protein Trafficking between Endosomes and the <i>Trans</i> -Golgi Network. Molecular Biology of the Cell, 2005, 16, 3467-3479.	2.1	184
28	Retrograde Transport of KDEL-bearing B-fragment of Shiga Toxin. Journal of Biological Chemistry, 1997, 272, 19554-19561.	3.4	180
29	Building endocytic pits without clathrin. Nature Reviews Molecular Cell Biology, 2015, 16, 311-321.	37.0	175
30	Friction Mediates Scission of Tubular Membranes Scaffolded by BAR Proteins. Cell, 2017, 170, 172-184.e11.	28.9	171
31	Participation of the Syntaxin 5/Ykt6/GS28/GS15 SNARE Complex in Transport from the Early/Recycling Endosome to the Trans-Golgi Network. Molecular Biology of the Cell, 2004, 15, 4011-4022.	2.1	159
32	The retromer complex and clathrin define an early endosomal retrograde exit site. Journal of Cell Science, 2007, 120, 2022-2031.	2.0	152
33	Characterization of Novel Rab6-Interacting Proteins Involved in Endosome-to-TGN Transport. Traffic, 2002, 3, 289-297.	2.7	145
34	A CCR4 antagonist combined with vaccines induces antigen-specific CD8+ T cells and tumor immunity against self antigens. Blood, 2011, 118, 4853-4862.	1.4	144
35	Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nature Nanotechnology, 2016, 11, 1112-1119.	31.5	142
36	Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi. Nature, 2013, 501, 116-120.	27.8	136

#	Article	IF	CITATIONS
37	The Legionella Effector RidL Inhibits Retrograde Trafficking to Promote Intracellular Replication. Cell Host and Microbe, 2013, 14, 38-50.	11.0	136
38	The B Subunit of Shiga Toxin Fused to a Tumor Antigen Elicits CTL and Targets Dendritic Cells to Allow MHC Class I-Restricted Presentation of Peptides Derived from Exogenous Antigens. Journal of Immunology, 2000, 165, 3301-3308.	0.8	132
39	Biophysical approaches to protein-induced membrane deformations in trafficking. Current Opinion in Cell Biology, 2008, 20, 476-482.	5.4	123
40	Rab6A and Rab6A′ GTPases Play Non-overlapping Roles in Membrane Trafficking. Traffic, 2006, 7, 394-407.	2.7	122
41	How curvature-generating proteins build scaffolds on membrane nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11226-11231.	7.1	120
42	The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. Journal of Cell Science, 2007, 120, 2010-2021.	2.0	117
43	1-[3-(2-[18F]Fluoropyridin-3-yloxy)propyl]pyrrole-2,5-dione:Â Design, Synthesis, and Radiosynthesis of a New [18F]Fluoropyridine-Based Maleimide Reagent for the Labeling of Peptides and Proteins. Bioconjugate Chemistry, 2005, 16, 406-420.	3.6	111
44	Glycosylation-Dependent IFN-Î ³ R Partitioning in Lipid and Actin Nanodomains Is Critical for JAK Activation. Cell, 2016, 166, 920-934.	28.9	110
45	Protein toxins: intracellular trafficking for targeted therapy. Gene Therapy, 2005, 12, 1360-1368.	4.5	109
46	Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum?. Trends in Cell Biology, 1998, 8, 158-162.	7.9	108
47	Stat-mediated Signaling Induced by Type I and Type II Interferons (IFNs) Is Differentially Controlled through Lipid Microdomain Association and Clathrin-dependent Endocytosis of IFN Receptors. Molecular Biology of the Cell, 2006, 17, 2896-2909.	2.1	107
48	Analysis of Articulation Between Clathrin and Retromer in Retrograde Sorting on Early Endosomes. Traffic, 2009, 10, 1868-1880.	2.7	106
49	Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. Journal of Cell Science, 2007, 120, 1457-1468.	2.0	99
50	Glycosphingolipids as toxin receptors. Seminars in Cell and Developmental Biology, 2004, 15, 397-408.	5.0	95
51	The Association of Shiga-like Toxin with Detergent-resistant Membranes Is Modulated by Glucosylceramide and Is an Essential Requirement in the Endoplasmic Reticulum for a Cytotoxic Effect. Molecular Biology of the Cell, 2006, 17, 1375-1387.	2.1	93
52	Persistent cell migration and adhesion rely on retrograde transport of β1Âintegrin. Nature Cell Biology, 2016, 18, 54-64.	10.3	93
53	Mechanism of Shiga Toxin Clustering on Membranes. ACS Nano, 2017, 11, 314-324.	14.6	93
54	Lipid Reorganization Induced by Shiga Toxin Clustering on Planar Membranes. PLoS ONE, 2009, 4, e6238.	2.5	90

#	Article	IF	CITATIONS
55	Major histocompatibility complex class I presentation of exogenous soluble tumor antigen fused to the B-fragment of Shiga toxin. European Journal of Immunology, 1998, 28, 2726-2737.	2.9	86
56	tGolgin-1 (p230, golgin-245) modulates Shiga-toxin transport to the Golgi and Golgi motility towards the microtubule-organizing centre. Journal of Cell Science, 2005, 118, 2279-2293.	2.0	86
57	Glycolipids and Lectins in Endocytic Uptake Processes. Journal of Molecular Biology, 2016, 428, 4792-4818.	4.2	84
58	Galectin-3 Protein Regulates Mobility of N-cadherin and GM1 Ganglioside at Cell-Cell Junctions of Mammary Carcinoma Cells. Journal of Biological Chemistry, 2012, 287, 32940-32952.	3.4	83
59	Membrane invagination induced by Shiga toxin B-subunit: from molecular structure to tube formation. Soft Matter, 2016, 12, 5164-5171.	2.7	82
60	The Shiga toxin B-subunit targets antigenin vivo to dendritic cells and elicits anti-tumor immunity. European Journal of Immunology, 2006, 36, 1124-1135.	2.9	80
61	<i>N</i> -Methyldihydroquinazolinone Derivatives of Retro-2 with Enhanced Efficacy against Shiga Toxin. Journal of Medicinal Chemistry, 2013, 56, 3404-3413.	6.4	80
62	Current Challenges in Delivery and Cytosolic Translocation of Therapeutic RNAs. Nucleic Acid Therapeutics, 2018, 28, 178-193.	3.6	78
63	Human colorectal tumors and metastases express Gb3 and can be targeted by an intestinal pathogen-based delivery tool. Molecular Cancer Therapeutics, 2008, 7, 2498-2508.	4.1	77
64	Synergy of Radiotherapy and a Cancer Vaccine for the Treatment of HPV-Associated Head and Neck Cancer. Molecular Cancer Therapeutics, 2015, 14, 1336-1345.	4.1	77
65	Shiga Toxinâ€Mediated Retrograde Delivery of a Topoisomeraseâ€I Inhibitor Prodrug. Angewandte Chemie - International Edition, 2007, 46, 6469-6472.	13.8	76
66	Two Distinct Gb3/CD77 Signaling Pathways Leading to Apoptosis Are Triggered by Anti-Gb3/CD77 mAb and Verotoxin-1. Journal of Biological Chemistry, 2003, 278, 45200-45208.	3.4	71
67	Induced Domain Formation in Endocytic Invagination, Lipid Sorting, and Scission. Cell, 2010, 142, 507-510.	28.9	70
68	Shiga Toxin—A Model for Glycolipid-Dependent and Lectin-Driven Endocytosis. Toxins, 2017, 9, 340.	3.4	68
69	Bending "On the Rocks"A Cocktail of Biophysical Modules to Build Endocytic Pathways. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016741-a016741.	5.5	66
70	Internalized Pseudomonas Exotoxin A can Exploit Multiple Pathways to Reach the Endoplasmic Reticulum. Traffic, 2006, 7, 379-393.	2.7	65
71	In vivo Tumor Targeting Using a Novel Intestinal Pathogen-Based Delivery Approach. Cancer Research, 2006, 66, 7230-7236.	0.9	65
72	Endophilin-A3 and Galectin-8 control the clathrin-independent endocytosis of CD166. Nature Communications, 2020, 11, 1457.	12.8	65

#	Article	IF	CITATIONS
73	EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription. Journal of Cell Biology, 2018, 217, 4092-4105.	5.2	63
74	Rab7 Is Functionally Required for Selective Cargo Sorting at the Early Endosome. Traffic, 2014, 15, 309-326.	2.7	62
75	Clustering on Membranes: Fluctuations and More. Trends in Cell Biology, 2018, 28, 405-415.	7.9	61
76	Rab3 proteins: key players in the control of exocytosis. Trends in Neurosciences, 1994, 17, 426-432.	8.6	60
77	The B subunit of Shiga toxin coupled to full-size antigenic protein elicits humoral and cell-mediated immune responses associated with a Th1-dominant polarization. International Immunology, 2003, 15, 1161-1171.	4.0	59
78	Retrograde Transport: Two (or More) Roads Diverged in an Endosomal Tree?. Traffic, 2011, 12, 956-962.	2.7	58
79	Lipid Cosorting Mediated by Shiga Toxin Induced Tubulation. Traffic, 2010, 11, 1519-1529.	2.7	56
80	The clathrin heavy chain isoform CHC22 functions in a novel endosomal sorting step. Journal of Cell Biology, 2010, 188, 131-144.	5.2	56
81	Glycosphingolipid metabolic reprogramming drives neural differentiation. EMBO Journal, 2018, 37, .	7.8	56
82	B Subunit of Shiga Toxin-Based Vaccines Synergize with α-Galactosylceramide to Break Tolerance against Self Antigen and Elicit Antiviral Immunity. Journal of Immunology, 2007, 179, 3371-3379.	0.8	55
83	Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nature Communications, 2019, 10, 1974.	12.8	55
84	Human GII.4 norovirus VLP induces membrane invaginations on giant unilamellar vesicles containing secretor gene dependent l±1,2-fucosylated glycosphingolipids. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1840-1845.	2.6	53
85	The secretion inhibitor Exo2 perturbs trafficking of Shiga toxin between endosomes and the trans-Golgi network. Biochemical Journal, 2008, 414, 471-484.	3.7	50
86	Spatiotemporal control of interferon-induced JAK/STAT signalling and gene transcription by the retromer complex. Nature Communications, 2016, 7, 13476.	12.8	50
87	Gastric Adenocarcinomas Express the Glycosphingolipid Gb3/CD77: Targeting of Gastric Cancer Cells with Shiga Toxin B-Subunit. Molecular Cancer Therapeutics, 2016, 15, 1008-1017.	4.1	50
88	1st Class Ticket to Class I: Protein Toxins as Pathfinders for Antigen Presentation. Traffic, 2002, 3, 697-704.	2.7	49
89	The Overexpression of GMAP-210 Blocks Anterograde and Retrograde Transport Between the ER and the Golgi Apparatus. Traffic, 2002, 3, 822-832.	2.7	49
90	Tumor-Specific Targeting of Pancreatic Cancer with Shiga Toxin B-Subunit. Molecular Cancer Therapeutics, 2011, 10, 1918-1928.	4.1	49

#	Article	IF	CITATIONS
91	Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site. Oncotarget, 2015, 6, 27832-27846.	1.8	46
92	Clathrin-independent endocytosis, retrograde trafficking, and cell polarity. Current Opinion in Cell Biology, 2020, 65, 112-121.	5.4	46
93	Facing Inward from Compartment Shores: How Many Pathways were we Looking For?. Traffic, 2000, 1, 119-123.	2.7	45
94	Increasing Diversity of Biological Membrane Fission Mechanisms. Trends in Cell Biology, 2018, 28, 274-286.	7.9	45
95	Cholera and Shiga toxin B-subunits: thermodynamic and structural considerations for function and biomedical applications. Toxicon, 2005, 45, 389-393.	1.6	44
96	Trans-Golgi network syntaxin 10 functions distinctly from syntaxins 6 and 16. Molecular Membrane Biology, 2005, 22, 313-325.	2.0	44
97	Functionally different pools of Shiga toxin receptor, globotriaosyl ceramide, in HeLa cells. FEBS Journal, 2006, 273, 5205-5218.	4.7	43
98	Shiga toxin B-subunit binds to the chaperone BiP and the nucleolar protein B23. Biology of the Cell, 2006, 98, 125-134.	2.0	42
99	Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation. Journal of Experimental Medicine, 2018, 215, 1245-1265.	8.5	42
100	CXCR6 deficiency impairs cancer vaccine efficacy and CD8 ⁺ resident memory T-cell recruitment in head and neck and lung tumors. , 2021, 9, e001948.		41
101	Endocytosis and toxicity of clostridial binary toxins depend on a clathrin-independent pathway regulated by Rho-GDI. Cellular Microbiology, 2011, 13, 154-170.	2.1	40
102	Inhibitors of the Cellular Trafficking of Ricin. Toxins, 2012, 4, 15-27.	3.4	40
103	In Vivo Tumor Targeting by the B-Subunit of Shiga Toxin. Molecular Imaging, 2008, 7, 7290.2008.00022.	1.4	38
104	Retrograde Delivery of Photosensitizer (TPPp-O-β-GluOH)3 Selectively Potentiates Its Photodynamic Activity. Bioconjugate Chemistry, 2008, 19, 532-538.	3.6	37
105	Functional dissection of the retrograde Shiga toxin trafficking inhibitor Retro-2. Nature Chemical Biology, 2020, 16, 327-336.	8.0	36
106	A new delivery system for auristatin in STxB-drug conjugate therapy. European Journal of Medicinal Chemistry, 2015, 95, 483-491.	5.5	35
107	The Dynamin Chemical Inhibitor Dynasore Impairs Cholesterol Trafficking and Sterol-Sensitive Genes Transcription in Human HeLa Cells and Macrophages. PLoS ONE, 2011, 6, e29042.	2.5	35

108 Shiga Toxin B-Subunit as a Tool to Study Retrograde Transport. , 2003, 73, 209-220.

#	Article	IF	CITATIONS
109	Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds. BMC Cancer, 2014, 14, 916.	2.6	33
110	(<i>S</i>)- <i>N</i> -Methyldihydroquinazolinones are the Active Enantiomers of Retro-2 Derived Compounds against Toxins. ACS Medicinal Chemistry Letters, 2014, 5, 94-97.	2.8	33
111	Palmitoylation of Interferon-α (IFN-α) Receptor Subunit IFNAR1 Is Required for the Activation of Stat1 and Stat2 by IFN-α. Journal of Biological Chemistry, 2009, 284, 24328-24340.	3.4	32
112	Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. Journal of Cell Science, 2013, 126, 2641-55.	2.0	32
113	Galectin-3 modulation of T-cell activation: mechanisms of membrane remodelling. Progress in Lipid Research, 2019, 76, 101010.	11.6	32
114	Trafficking of Shiga toxin/Shiga-like toxin-1 in human glomerular microvascular endothelial cells and human mesangial cells. Kidney International, 2006, 70, 2085-2091.	5.2	31
115	Differential Effects of Depletion of ARL1 and ARFRP1 on Membrane Trafficking between the trans-Golgi Network and Endosomes. Journal of Biological Chemistry, 2009, 284, 10583-10592.	3.4	31
116	Glycosylation and raft endocytosis in cancer. Cancer and Metastasis Reviews, 2020, 39, 375-396.	5.9	31
117	MALDI-2 Mass Spectrometry and Immunohistochemistry Imaging of Gb3Cer, Gb4Cer, and Further Glycosphingolipids in Human Colorectal Cancer Tissue. Analytical Chemistry, 2020, 92, 7096-7105.	6.5	31
118	Exocytosis: SNAREs drum up!. European Journal of Neuroscience, 1998, 10, 415-422.	2.6	29
119	Regulation of the Ca ²⁺ Sensitivity of Exocytosis by Rab3a. Journal of Neurochemistry, 1998, 71, 1127-1133.	3.9	29
120	Distinct role of Rab3A and Rab3B in secretory activity of rat melanotrophs. American Journal of Physiology - Cell Physiology, 2007, 292, C98-C105.	4.6	28
121	Carbohydrate Conformation and Lipid Condensation in Monolayers Containing Glycosphingolipid Gb3: Influence of Acyl Chain Structure. Biophysical Journal, 2014, 107, 1146-1155.	0.5	28
122	Retrograde Trafficking Inhibitor of Shiga Toxins Reduces Morbidity and Mortality of Mice Infected with Enterohemorrhagic Escherichia coli. Antimicrobial Agents and Chemotherapy, 2015, 59, 5010-5013.	3.2	28
123	Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Molecular Medicine, 2021, 13, e13742.	6.9	28
124	AGAP2 regulates retrograde transport between early endosomes and the TGN. Journal of Cell Science, 2010, 123, 2381-2390.	2.0	27
125	Tumor Delivery of Ultrasound Contrast Agents Using Shiga Toxin B Subunit. Molecular Imaging, 2011, 10, 7290.2010.00030.	1.4	27
126	Ceramide structure dictates glycosphingolipid nanodomain assembly and function. Nature Communications, 2021, 12, 3675.	12.8	27

#	Article	IF	CITATIONS
127	I. Shiga toxin B-subunit system: retrograde transport, intracellular vectorization, and more. American Journal of Physiology - Renal Physiology, 2002, 283, G1-G7.	3.4	26
128	The SNXy flavours of endosomal sorting. Nature Cell Biology, 2011, 13, 884-886.	10.3	26
129	Shiga Toxin Induces Lipid Compression: A Mechanism for Generating Membrane Curvature. Nano Letters, 2019, 19, 7365-7369.	9.1	26
130	Sub-cellular localisation of a 15N-labelled peptide vector using NanoSIMS imaging. Applied Surface Science, 2006, 252, 6925-6930.	6.1	25
131	Creating and Modulating Microdomains in Poreâ€Spanning Membranes. ChemPhysChem, 2012, 13, 108-114.	2.1	25
132	Inhibitors of retrograde trafficking active against ricin and Shiga toxins also protect cells from several viruses, Leishmania and Chlamydiales. Chemico-Biological Interactions, 2017, 267, 96-103.	4.0	25
133	Thermodynamic Analysis of the Structural Stability of the Shiga Toxin B-Subunitâ€. Biochemistry, 2003, 42, 9498-9506.	2.5	24
134	Effects of HIVâ€4 Nef on Retrograde Transport from the Plasma Membrane to the Endoplasmic Reticulum. Traffic, 2003, 4, 323-332.	2.7	23
135	Shiga toxin B-subunit sequential binding to its natural receptor in lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 628-636.	2.6	23
136	The effects of globotriaosylceramide tail saturation level on bilayer phases. Soft Matter, 2015, 11, 1352-1361.	2.7	22
137	Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum. FEBS Journal, 2009, 276, 1581-1595.	4.7	21
138	Shiga toxin induces membrane reorganization and formation of long range lipid order. Soft Matter, 2015, 11, 186-192.	2.7	21
139	Renal globotriaosylceramide facilitates tubular albumin absorption and its inhibition protectsÂagainst acute kidney injury. Kidney International, 2019, 96, 327-341.	5.2	21
140	Two-dimensional structures of the Shiga toxin B-subunit and of a chimera bound to the glycolipid receptor Gb3. Journal of Structural Biology, 2002, 139, 113-121.	2.8	20
141	Measuring Retrograde Transport to the Trans â€Golgi Network. Current Protocols in Cell Biology, 2006, 32, Unit 15.10.	2.3	19
142	βIII Spectrin Regulates the Structural Integrity and the Secretory Protein Transport of the Golgi Complex. Journal of Biological Chemistry, 2013, 288, 2157-2166.	3.4	19
143	A Therapeutic Her2/neu Vaccine Targeting Dendritic Cells Preferentially Inhibits the Growth of Low Her2/neu–Expressing Tumor in HLA-A2 Transgenic Mice. Clinical Cancer Research, 2016, 22, 4133-4144.	7.0	19
144	Synthesis and Properties of a Mitochondrial Peripheral Benzodiazepine Receptor Conjugate. ChemMedChem, 2008, 3, 1687-1695.	3.2	17

#	Article	IF	CITATIONS
145	Key role of receptor density in colloid/cell specific interaction: a quantitative biomimetic study on giant vesicles. European Physical Journal E, 2008, 26, 205-16.	1.6	17
146	In vivo tumor targeting by the B-subunit of shiga toxin. Molecular Imaging, 2008, 7, 239-47.	1.4	17
147	Functional Analysis of Arl1 and Golginâ€97 in Endosomeâ€ŧoâ€īGN Transport Using Recombinant Shiga Toxin B Fragment. Methods in Enzymology, 2005, 404, 442-453.	1.0	16
148	Shiga toxin stimulates clathrin-independent endocytosis of VAMP2/3/8 SNARE proteins. Journal of Cell Science, 2015, 128, 2891-902.	2.0	16
149	Metalâ€Free Activation of a C(sp)â^'H Bond of Aryl Acetylenes. Chemistry - A European Journal, 2016, 22, 14812-14815.	3.3	16
150	Rapalog combined with CCR4 antagonist improves anticancer vaccines efficacy. International Journal of Cancer, 2018, 143, 3008-3018.	5.1	16
151	Synthesis of Peptideâ^'Protein Conjugates Using N-Succinimidyl Carbamate Chemistry. Bioconjugate Chemistry, 2010, 21, 219-228.	3.6	15
152	<scp>SNAP</scp> â€ŧag Based Proteomics Approach for the Study ofÂthe Retrograde Route. Traffic, 2012, 13, 914-925.	2.7	15
153	Rab12 Localizes to Shiga Toxinâ€Induced Plasma Membrane Invaginations and Controls Toxin Transport. Traffic, 2014, 15, 772-787.	2.7	15
154	Retrograde transport is not required for cytosolic translocation of the B-subunit of Shiga toxin. Journal of Cell Science, 2015, 128, 2373-2387.	2.0	15
155	Synthesis of globo- and isoglobotriosides bearing a cinnamoylphenyl tag as novel electrophilic thiol-specific carbohydrate reagents. Carbohydrate Research, 2006, 341, 2026-2036.	2.3	14
156	Specific adsorption of functionalized colloids at the surface of living cells: A quantitative kinetic analysis of the receptor-mediated binding. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2450-2457.	2.6	14
157	SNAP-Tagging the Retrograde Route. Methods in Cell Biology, 2013, 118, 139-155.	1.1	13
158	Targeted Shiga toxin–drug conjugates prepared via Cu-free click chemistry. Bioorganic and Medicinal Chemistry, 2015, 23, 7150-7157.	3.0	13
159	Selfâ€assembled, Programmable DNA Nanodevices for Biological and Biomedical Applications. ChemBioChem, 2021, 22, 763-778.	2.6	13
160	Absolute Quantification of Drug Vector Delivery to the Cytosol. Angewandte Chemie - International Edition, 2021, 60, 14824-14830.	13.8	13
161	Shiga toxin signals via ATP and its effect is blocked by purinergic receptor antagonism. Scientific Reports, 2019, 9, 14362.	3.3	12
162	Shiga Toxin Uptake and Sequestration in Extracellular Vesicles Is Mediated by Its B-Subunit. Toxins, 2020, 12, 449.	3.4	12

#	Article	IF	CITATIONS
163	Glycolipid-dependent and lectin-driven transcytosis in mouse enterocytes. Communications Biology, 2021, 4, 173.	4.4	12
164	Metalâ€Free Activation of C(sp ³)–H Bond, and a Practical and Rapid Synthesis of Privileged 1â€Substituted 1,2,3,4â€Tetrahydroisoquinolines. European Journal of Organic Chemistry, 2017, 2017, 5275-5292.	2.4	11
165	STxB as an Antigen Delivery Tool for Mucosal Vaccination. Toxins, 2022, 14, 202.	3.4	10
166	Intracellular trafficking of bacterial and plant protein toxins. , 2006, , 135-153.		9
167	Synthesis, Chiral Separation, Absolute Configuration Assignment, and Biological Activity of Enantiomers of Retroâ€1 as Potent Inhibitors of Shiga Toxin. ChemMedChem, 2015, 10, 1153-1156.	3.2	8
168	Retromer Sets a Trap for Endosomal Cargo Sorting. Cell, 2016, 167, 1452-1454.	28.9	8
169	The Cellular and Chemical Biology of Endocytic Trafficking and Intracellular Delivery—The GL–Lect Hypothesis. Molecules, 2021, 26, 3299.	3.8	8
170	Characterization of the Interaction of the Monomeric GTP-Binding Protein Rab3a with Geranylgeranyl Transferase II. FEBS Journal, 1996, 239, 362-368.	0.2	7
171	Characterization ofÂtheÂnon-native trifluoroethanol-induced intermediate conformational state ofÂtheÂShiga toxin B-subunit. Biochimie, 2006, 88, 1199-1207.	2.6	7
172	A novel type of quantum dot–transferrin conjugate using DNA hybridization mimics intracellular recycling of endogenous transferrin. Nanoscale, 2017, 9, 15453-15460.	5.6	7
173	MicroRNA 199a-5p Attenuates Retrograde Transport and Protects against Toxin-Induced Inhibition of Protein Biosynthesis. Molecular and Cellular Biology, 2018, 38, .	2.3	7
174	Slow Relaxation of Shape and Orientational Texture in Membrane Gel Domains. Langmuir, 2015, 31, 12699-12707.	3.5	6
175	Intracellular trafficking of Shigaâ€ŧoxinâ€Bâ€subunitâ€functionalized spherulites. Biology of the Cell, 2008, 100, 717-728.	2.0	5
176	High-Relaxivity Molecular MRI Contrast Agent to Target Gb3-Expressing Cancer Cells. Bioconjugate Chemistry, 2022, 33, 180-193.	3.6	5
177	The roles of dynein and myosin VI motor proteins in endocytosis. Journal of Cell Science, 2022, 135, .	2.0	5
178	Chemistryâ€based protein modification strategy for endocytic pathway analysis. Biology of the Cell, 2010, 102, 351-359.	2.0	4
179	Imaging galectin-3 dependent endocytosis with lattice light-sheet microscopy. Proceedings of SPIE, 2017, , .	0.8	4
180	Retrograde and Anterograde Transport of Lat-Vesicles during the Immunological Synapse Formation: Defining the Finely-Tuned Mechanism. Cells, 2021, 10, 359.	4.1	4

#	Article	IF	CITATIONS
181	Siteâ€specific <i>N</i> â€glycan profiles of α ₅ î² ₁ integrin from rat liver. Biology of the Cell, 2022, 114, 160-176.	2.0	4
182	Correlation between Shiga toxin Bâ€subunit stability and antigen crosspresentation: A mutational analysis. FEBS Letters, 2008, 582, 185-189.	2.8	3
183	Biodistribution and Tumor Targeting of Indium and Iodine-labeled Shiga Toxin B-Subunit. Current Radiopharmaceuticals, 2009, 2, 184-190.	0.8	3
184	Solubilization and Purification of α5β1 Integrin from Rat Liver for Reconstitution into Nanodiscs. Methods in Molecular Biology, 2022, , 1-18.	0.9	3
185	Correspondence to Creydt VP et al., Cytotoxic effect of Shiga toxin-2 holotoxin and its B subunit on human renal tubular epithelial cells, Microbes Infect. 8(2) (2006) 410–419. Microbes and Infection, 2006, 8, 2331-2332.	1.9	2
186	26. Bioactive enantiomers of Retro-2 derived compounds against ricin and Shiga toxins are (S)-N-methyl-dihydro-quinazolinones. Toxicon, 2014, 91, 175.	1.6	2
187	Endocytosis: Remote Control from Deep Inside. Current Biology, 2017, 27, R663-R666.	3.9	1
188	Local IFNÎ \pm enhances the anti-tumoral efficacy of systemic anti-PD1 to prevent tumor relapse. , 2020, 8, e000996.		1
189	Quantitative Methods to Study and of Cargo Proteins. Methods in Molecular Biology, 2021, 2233, 53-70.	0.9	1
190	Application of Protein Toxins as Cell Biological and Pharmacological Tools. Toxins, 2022, 14, 242.	3.4	1
191	of in Mouse. Methods in Molecular Biology, 2022, 2442, 367-390.	0.9	1
192	Toxines à contre-courant. Biofutur, 2000, 2000, 28-32.	0.0	0
193	Flagellin is the major EHEC 0157:H7 virulence factor required for upregulated expression of proinflammatory signals by intestinal epithelial cells. Gastroenterology, 2003, 124, A106.	1.3	0
194	Development of potent small-molecule inhibitors of Shiga toxin. Toxicon, 2013, 75, 216-217.	1.6	0
195	Using Glycosphingolipids to Build Endocytic Pits in Clathrin-Independent Endocytosis. Biophysical Journal, 2016, 110, 5a.	0.5	0
196	Retro Styles for Vesicle Coats. Biochemistry, 2019, 58, 433-434.	2.5	0
197	2nd PSL Chemical Biology Symposium (2019): At the Crossroads of Chemistry and Biology. ChemBioChem, 2019, 20, 968-973.	2.6	0
198	Absolute Quantification of Drug Vector Delivery to the Cytosol. Angewandte Chemie, 2021, 133, 14950-14956.	2.0	0

#	Article	IF	CITATIONS
199	The final twist in endocytic membrane scission. Nature Cell Biology, 2021, 23, 812-813.	10.3	Ο
200	Abstract 752: A CCR4 antagonist combined with protein-or DNA-based vaccines efficiently breaks tolerance and elicits CD8+T cells directed against self and viral associated tumor antigens. , 2011, , .		0
201	Abstract 5388: Local mucosal CD8+T cell response is required to inhibit the growth of orthotopic head and neck and lung cancers. , 2012, , .		0
202	Abstract 2504: A therapeutic Her2-Neu cancer vaccine alone or in combination with anti-Her2 mAb inhibits tumor growth in HLA-A2 transgenic mice. , 2015, , .		0
203	Abstract 5772: Engineered lectins to treat cancer. , 2018, , .		0
204	Retrograde Transport. , 2022, , .		0
205	C910 chemical compound inhibits the traffiking of several bacterial AB toxins with cross-protection against influenza virus. IScience, 2022, 25, 104537.	4.1	0