Katarzyna A Cieslik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3433376/publications.pdf

Version: 2024-02-01

34 papers

1,164 citations

304743 22 h-index 477307 29 g-index

34 all docs

34 docs citations

times ranked

34

1605 citing authors

#	Article	IF	CITATIONS
1	Cleavage stimulating factor 64 depletion mitigates cardiac fibrosis through alternative polyadenylation. Biochemical and Biophysical Research Communications, 2022, 597, 109-114.	2.1	3
2	Sex-specific phenotypes in the aging mouse heart and consequences for chronic fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H285-H300.	3.2	13
3	Treatment with a DC-SIGN ligand reduces macrophage polarization and diastolic dysfunction in the aging female but not male mouse hearts. GeroScience, 2021, 43, 881-899.	4.6	5
4	Abstract P400: Treatment With The AMPK Agonist AICAR Alleviates Age-associated Cardiac Defects In The Mouse By Distinct Sex-specific Mechanisms. Circulation Research, 2021, 129, .	4.5	0
5	Mechanosensing dysregulation in the fibroblast: A hallmark of the aging heart. Ageing Research Reviews, 2020, 63, 101150.	10.9	40
6	Abstract 279: A Defective Mechanosensing Promotes Impaired Fibroblast-to-myofibroblast Maturation in the Aging Mouse Heart. Circulation Research, 2020, 127, .	4.5	0
7	Improved Cardiovascular Function in Old Mice After N-Acetyl Cysteine and Glycine Supplemented Diet: Inflammation and Mitochondrial Factors. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1167-1177.	3.6	28
8	Changes in cardiac resident fibroblast physiology and phenotype in aging. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H745-H755.	3.2	22
9	Aicar treatment reduces interstitial fibrosis in aging mice. Journal of Molecular and Cellular Cardiology, 2017, 111, 81-85.	1.9	18
10	Dissecting the role of myeloid and mesenchymal fibroblasts in age-dependent cardiac fibrosis. Basic Research in Cardiology, 2017, 112, 34.	5.9	26
11	Phosphocholineâ€containing ligands direct CRP induction of M2 macrophage polarization independent of T cell polarization: Implication for chronic inflammatory states. Immunity, Inflammation and Disease, 2016, 4, 274-288.	2.7	12
12	Mesenchymal stem cell-derived inflammatory fibroblasts mediate interstitial fibrosis in the aging heart. Journal of Molecular and Cellular Cardiology, 2016, 91, 28-34.	1.9	43
13	Mesenchymal stem cell-derived inflammatory fibroblasts promote monocyte transition into myeloid fibroblasts <i>via</i> an IL-6-dependent mechanism in the aging mouse heart. FASEB Journal, 2015, 29, 3160-3170.	0.5	27
14	Adverse fibrosis in the aging heart depends on signaling between myeloid and mesenchymal cells; role of inflammatory fibroblasts. Journal of Molecular and Cellular Cardiology, 2014, 70, 56-63.	1.9	57
15	Abstract 74: The Inflammatory Phenotype Of Mesenchymal Fibroblasts And Its Role In Aging Dependent Cardiac Fibrosis- A Target For Statins?. Circulation Research, 2014, 115, .	4.5	0
16	AICAR-dependent AMPK activation improves scar formation in the aged heart in a murine model of reperfused myocardial infarction. Journal of Molecular and Cellular Cardiology, 2013, 63, 26-36.	1.9	50
17	Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB Journal, 2013, 27, 1761-1771.	0.5	40
18	Th1/M1 Conversion to Th2/M2 Responses in Models of Inflammation Lacking Cell Death Stimulates Maturation of Monocyte Precursors to Fibroblasts. Frontiers in Immunology, 2013, 4, 287.	4.8	32

#	Article	IF	CITATIONS
19	14-3-3ε Plays a Role in Cardiac Ventricular Compaction by Regulating the Cardiomyocyte Cell Cycle. Molecular and Cellular Biology, 2012, 32, 5089-5102.	2.3	44
20	Origin of Developmental Precursors Dictates the Pathophysiologic Role of Cardiac Fibroblasts. Journal of Cardiovascular Translational Research, 2012, 5, 749-759.	2.4	48
21	Abstract 208: Farnesylation-Dependent Fibrosis in the Aged Murine Heart. Circulation Research, 2012, 111, .	4.5	0
22	Defective Myofibroblast Formation from Mesenchymal Stem Cells in the Aging Murine Heart. American Journal of Pathology, 2011, 179, 1792-1806.	3.8	46
23	Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart. Journal of Molecular and Cellular Cardiology, 2011, 50, 248-256.	1.9	116
24	Myeloid Fibroblast Precursors in Cardiac Interstitial Fibrosis â€" The Origin of Fibroblast Precursors Dictates the Pathophysiologic Role. , 2011, , 197-228.		0
25	Peroxisome Proliferator-Activated Receptor- \hat{l} Upregulates 14-3-3 $\hat{l}\mu$ in Human Endothelial Cells via CCAAT/Enhancer Binding Protein- \hat{l}^2 . Circulation Research, 2007, 100, e59-71.	4.5	49
26	Essential Role of C-Rel in Nitric-Oxide Synthase-2 Transcriptional Activation: Time-Dependent Control by Salicylate. Molecular Pharmacology, 2006, 70, 2004-2014.	2.3	10
27	Protein Kinase Cδ Mediates Platelet-Induced Breast Cancer Cell Invasion. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 373-380.	2.5	46
28	Transcriptional Control of COX-2 via C/EBPβ. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 679-685.	2.4	63
29	Inhibition of p90 Ribosomal S6 Kinase-mediated CCAAT/Enhancer-binding Protein \hat{l}^2 Activation and Cyclooxygenase-2 Expression by Salicylate. Journal of Biological Chemistry, 2005, 280, 18411-18417.	3.4	27
30	Salicylate Suppresses Macrophage Nitric-oxide Synthase-2 and Cyclo-oxygenase-2 Expression by Inhibiting CCAAT/Enhancer-binding Protein-Î ² Binding via a Common Signaling Pathway. Journal of Biological Chemistry, 2002, 277, 49304-49310.	3.4	74
31	Up-regulation of Endothelial Nitric-oxide Synthase Promoter by the Phosphatidylinositol 3-Kinase \hat{I}^3 /Janus Kinase 2/MEK-1-dependent Pathway. Journal of Biological Chemistry, 2001, 276, 1211-1219.	3.4	64
32	Transcriptional Regulation of Endothelial Nitric-oxide Synthase by an Interaction between Casein Kinase 2 and Protein Phosphatase 2A. Journal of Biological Chemistry, 1999, 274, 34669-34675.	3.4	50
33	Cyanonitrosylmetallates as potential NO-donors. Journal of Inorganic Biochemistry, 1998, 69, 121-127.	3.5	36
34	Transcriptional Regulation of Endothelial Nitric-oxide Synthase by Lysophosphatidylcholine. Journal of Biological Chemistry, 1998, 273, 14885-14890.	3.4	75