Ania K Majewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3433324/publications.pdf Version: 2024-02-01

ANIA K MAIEWSKA

#	Article	IF	CITATIONS
1	Synapse-specific plasticity relies on neuroimmune interactions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	1
2	Repopulated microglia induce expression of Cxcl13 with differential changes in Tau phosphorylation but do not impact amyloid pathology. Journal of Neuroinflammation, 2022, 19, .	7.2	7
3	Acute ethanol exposure rapidly alters cerebellar and cortical microglial physiology. European Journal of Neuroscience, 2021, 54, 5834-5843.	2.6	11
4	Selective serotonin reuptake inhibitors for functional recovery after stroke: similarities with the critical period and the role of experience-dependent plasticity. Journal of Neurology, 2021, 268, 1203-1209.	3.6	16
5	Loss of P2Y12 Has Behavioral Effects in the Adult Mouse. International Journal of Molecular Sciences, 2021, 22, 1868.	4.1	21
6	Ethanol modulation of cerebellar neuroinflammation in a postnatal mouse model of fetal alcohol spectrum disorders. Journal of Neuroscience Research, 2021, 99, 1986-2007.	2.9	14
7	Microglia and astrocytes show limited, acute alterations in morphology and protein expression following a single developmental alcohol exposure. Journal of Neuroscience Research, 2021, 99, 2008-2025.	2.9	9
8	Persistent organic pollutants at the synapse: Shared phenotypes and converging mechanisms of developmental neurotoxicity. Developmental Neurobiology, 2021, 81, 623-652.	3.0	14
9	An overview of microglia ontogeny and maturation in the homeostatic and pathological brain. European Journal of Neuroscience, 2021, 53, 3525-3547.	2.6	16
10	The role of P2Y12 in the kinetics of microglial self-renewal and maturation in the adult visual cortex in vivo. ELife, 2021, 10, .	6.0	19
11	Little cells of the little brain: microglia in cerebellar development and function. Trends in Neurosciences, 2021, 44, 564-578.	8.6	23
12	In Vivo Imaging of the Microglial Landscape After Whole Brain Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2021, 111, 1066-1071.	0.8	5
13	Special issue editorial: Clial plasticity in health and disease. European Journal of Neuroscience, 2021, 54, 5643-5648.	2.6	0
14	Dynamics of microglia and dendritic spines in early adolescent cortex after developmental alcohol exposure. Developmental Neurobiology, 2021, 81, 786-804.	3.0	3
15	The Role of Microglia in Neurodevelopmental Disorders and their Therapeutics. Current Topics in Medicinal Chemistry, 2020, 20, 272-276.	2.1	16
16	Phosphoinositide-3-Kinase Î ³ Is Not a Predominant Regulator of ATP-Dependent Directed Microglial Process Motility or Experience-Dependent Ocular Dominance Plasticity. ENeuro, 2020, 7, ENEURO.0311-20.2020.	1.9	10
17	Ultrastructural Analyses of Microglial Interactions with Synapses. Methods in Molecular Biology, 2019, 2034, 83-95.	0.9	10
18	Noradrenergic signaling in the wakeful state inhibits microglial surveillance and synaptic plasticity in the mouse visual cortex. Nature Neuroscience, 2019, 22, 1782-1792.	14.8	211

ANIA K MAJEWSKA

#	Article	IF	CITATIONS
19	Cerebellar microglia are dynamically unique and survey Purkinje neurons <i>in vivo</i> . Developmental Neurobiology, 2018, 78, 627-644.	3.0	90
20	Developmental alcohol exposure impairs synaptic plasticity without overtly altering microglial function in mouse visual cortex. Brain, Behavior, and Immunity, 2018, 67, 257-278.	4.1	20
21	The microglial fractalkine receptor is not required for activity-dependent plasticity in the mouse visual system. Glia, 2017, 65, 1744-1761.	4.9	59
22	What the Spectrum of Microglial Functions Can Teach us About Fetal Alcohol Spectrum Disorder. Frontiers in Synaptic Neuroscience, 2017, 9, 11.	2.5	16
23	Effects of Developmental Alcohol Exposure on Potentiation and Depression of Visual Cortex Responses. Alcoholism: Clinical and Experimental Research, 2015, 39, 1434-1442.	2.4	10
24	Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: analysis of matrix metalloproteinase 9 deficient mice. Frontiers in Cellular Neuroscience, 2015, 9, 369.	3.7	33
25	Single- and Two-Photon Fluorescence Recovery after Photobleaching. Cold Spring Harbor Protocols, 2015, 2015, pdb.top083519.	0.3	12
26	Analysis of Glial Activation around Brain Metastases of Breast Tumors in a Mouse Model. FASEB Journal, 2015, 29, 613.6.	0.5	0
27	Fluoxetine modulates breast cancer metastasis to the brain in a murine model. BMC Cancer, 2014, 14, 598.	2.6	19
28	Characterization of the BAC Id3-enhanced green fluorescent protein transgenic mouse line for <i>in vivo</i> imaging of astrocytes. Neurophotonics, 2014, 1, 011014.	3.3	8
29	Subcellular localization of intercellular adhesion moleculeâ€5 (telencephalin) in the visual cortex is not developmentally regulated in the absence of matrix metalloproteinaseâ€9. Journal of Comparative Neurology, 2014, 522, 676-688.	1.6	25
30	The effects of postnatal exposure to low-dose bisphenol-A on activity-dependent plasticity in the mouse sensory cortex. Frontiers in Neuroanatomy, 2014, 8, 117.	1.7	14
31	Interactions between intercellular adhesion molecule-5 positive elements and their surroundings in the rodent visual cortex. Communicative and Integrative Biology, 2013, 6, e27315.	1.4	5
32	Imaging Visual Cortical Structure and Function In Vivo. Journal of Glaucoma, 2013, 22, S21-S23.	1.6	2
33	Brain Tumor Imaging: Live Imaging of Glioma by Two-Photon Microscopy. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot073668.	0.3	19
34	Brain Tumor Imaging: Imaging Brain Metastasis Using a Brain-Metastasizing Breast Adenocarcinoma. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot073676.	0.3	1
35	Optogenetic Delay of Status Epilepticus Onset in an In Vivo Rodent Epilepsy Model. PLoS ONE, 2013, 8, e62013.	2.5	58
36	Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia, 2012, 60, 541-558.	4.9	278

ANIA K MAJEWSKA

#	Article	IF	CITATIONS
37	A role for microglia in synaptic plasticity?. Communicative and Integrative Biology, 2011, 4, 220-222.	1.4	144
38	The Mouse Primary Visual Cortex Is a Site of Production and Sensitivity to Estrogens. PLoS ONE, 2011, 6, e20400.	2.5	20
39	HIV-1 Tat-Induced Microgliosis and Synaptic Damage via Interactions between Peripheral and Central Myeloid Cells. PLoS ONE, 2011, 6, e23915.	2.5	63
40	Experience-dependent plasticity in visual cortex. Communicative and Integrative Biology, 2011, 4, 216-219.	1.4	7
41	Experience-dependent regulation of CaMKII activity within single visual cortex synapses in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21241-21246.	7.1	28
42	Rapid experience-dependent plasticity of synapse function and structure in ferret visual cortex in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21235-21240.	7.1	40
43	Intracranial Injection of Adeno-associated Viral Vectors. Journal of Visualized Experiments, 2010, , .	0.3	33
44	A Thin-skull Window Technique for Chronic Two-photon In vivo Imaging of Murine Microglia in Models of Neuroinflammation. Journal of Visualized Experiments, 2010, , .	0.3	56
45	Preparation of Mouse Brain Tissue for Immunoelectron Microscopy. Journal of Visualized Experiments, 2010, , .	0.3	53
46	Chronic Imaging of Mouse Visual Cortex Using a Thinned-skull Preparation. Journal of Visualized Experiments, 2010, , .	0.3	13
47	Postsynaptic Deregulation in GAP-43 Heterozygous Mouse Barrel Cortex. Cerebral Cortex, 2010, 20, 1696-1707.	2.9	8
48	Microglial Interactions with Synapses Are Modulated by Visual Experience. PLoS Biology, 2010, 8, e1000527.	5.6	1,217
49	Structural Dynamics of Synapses <i>in Vivo</i> Correlate with Functional Changes during Experience-Dependent Plasticity in Visual Cortex. Journal of Neuroscience, 2010, 30, 11086-11095.	3.6	83
50	Synaptic Mechanisms of Activity-Dependent Remodeling in Visual Cortex during Monocular Deprivation. Journal of Experimental Neuroscience, 2009, 2, JEN.S2559.	2.3	8
51	Rapid, longâ€term labeling of cells in the developing and adult rodent visual cortex using doubleâ€stranded adenoâ€associated viral vectors. Developmental Neurobiology, 2009, 69, 674-688.	3.0	16
52	Remodeling of Synaptic Structure in Sensory Cortical Areas <i>In Vivo</i> . Journal of Neuroscience, 2006, 26, 3021-3029.	3.6	216
53	Next-Generation Optical Technologies for Illuminating Genetically Targeted Brain Circuits. Journal of Neuroscience, 2006, 26, 10380-10386.	3.6	708
54	In Vivo Two-Photon Imaging Reveals a Role of Arc in Enhancing Orientation Specificity in Visual Cortex. Cell, 2006, 126, 389-402.	28.9	213

ANIA K MAJEWSKA

#	Article	IF	CITATIONS
55	Plasticity and specificity of cortical processing networks. Trends in Neurosciences, 2006, 29, 323-329.	8.6	72
56	Effects of Synaptic Activity on Dendritic Spine Motility of Developing Cortical Layer V Pyramidal Neurons. Cerebral Cortex, 2006, 16, 730-741.	2.9	51
57	Reprogramming cortex. , 2006, , 349-360.		Ο
58	Dendritic Spine Geometry: Functional Implication and Regulation. Neuron, 2005, 46, 529-532.	8.1	195
59	Dendritic Spine Dynamics Are Regulated by Monocular Deprivation and Extracellular Matrix Degradation. Neuron, 2004, 44, 1021-1030.	8.1	267
60	Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 16024-16029.	7.1	179
61	Response: Raising the speed limit. Trends in Neurosciences, 2002, 25, 441.	8.6	26
62	Tumor Necrosis Factor-α and Basic Fibroblast Growth Factor Decrease Glial Fibrillary Acidic Protein and Its Encoding mRNA in Astrocyte Cultures and Glioblastoma Cells. Journal of Neurochemistry, 2002, 65, 2716-2724.	3.9	29
63	Two-photon investigation of calcium dynamics in dendritic spines during motility. , 2001, 4262, 354.		0
64	Topology of Gap Junction Networks in C. elegans. Journal of Theoretical Biology, 2001, 212, 155-167.	1.7	15
65	From form to function: calcium compartmentalization in dendritic spines. Nature Neuroscience, 2000, 3, 653-659.	14.8	351
66	A custom-made two-photon microscope and deconvolution system. Pflugers Archiv European Journal of Physiology, 2000, 441, 398-408.	2.8	153
67	Regulation of Spine Calcium Dynamics by Rapid Spine Motility. Journal of Neuroscience, 2000, 20, 8262-8268.	3.6	183
68	Mechanisms of Calcium Decay Kinetics in Hippocampal Spines: Role of Spine Calcium Pumps and Calcium Diffusion through the Spine Neck in Biochemical Compartmentalization. Journal of Neuroscience, 2000, 20, 1722-1734.	3.6	223
69	Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis. Journal of Neuroscience, 1999, 19, 1976-1987.	3.6	274
70	Developmental regulation of spine motility in the mammalian central nervous system. Proceedings of the United States of America, 1999, 96, 13438-13443.	7.1	389
71	From Form to Function: Functional Exploration of Dendritic Morphology in CA1 Pyramidal Neurons. Developmental Neuropsychology, 1999, 16, 315-316.	1.4	1
72	Detecting Action Potentials in Neuronal Populations with Calcium Imaging. Methods, 1999, 18, 215-221.	3.8	271

#	Article	IF	CITATIONS
73	Expression of interleukin-11 and its encoding mRNA by glioblastoma cells. Neuroscience Letters, 1995, 196, 153-156.	2.1	19