Margarita Parra Ãlvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3433102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peptideâ€Capped Mesoporous Nanoparticles: Toward a more Efficient Internalization of Alendronate. ChemistrySelect, 2020, 5, 3618-3625.	1.5	2
2	Not always what closes best opens better: mesoporous nanoparticles capped with organic gates. Science and Technology of Advanced Materials, 2019, 20, 699-709.	6.1	3
3	Efficacy of budesonide-loaded mesoporous silica microparticles capped with a bulky azo derivative in rats with TNBS-induced colitis. International Journal of Pharmaceutics, 2019, 561, 93-101.	5.2	12
4	Towards the fluorogenic detection of peroxide explosives through host–guest chemistry. Royal Society Open Science, 2018, 5, 171787.	2.4	7
5	Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 2018, 23, 375.	3.8	11
6	Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 2018, 281, 58-69.	9.9	39
7	Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/drugs in colon. Royal Society Open Science, 2018, 5, 180873.	2.4	6
8	A New Highly Selective Chromogenic and Fluorogenic Chemosensor for Copper (II). Letters in Organic Chemistry, 2018, 15, 659-664.	0.5	2
9	NO ₂ -controlled cargo delivery from gated silica mesoporous nanoparticles. Chemical Communications, 2017, 53, 585-588.	4.1	16
10	Selfâ€Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports. Chemistry - A European Journal, 2016, 22, 14126-14130.	3.3	14
11	3â€Formylâ€BODIPY Phenylhydrazone as a Chromoâ€Fluorogenic Probe for Selective Detection of NO ₂ (g). Chemistry - A European Journal, 2016, 22, 8448-8451.	3.3	11
12	Biphenyl derivatives containing trimethylsilyl benzyl ether or oxime groups as probes for NO2 detection. RSC Advances, 2016, 6, 43719-43723.	3.6	2
13	Selective chromo-fluorogenic detection of trivalent cations in aqueous environments using a dehydration reaction. New Journal of Chemistry, 2016, 40, 9042-9045.	2.8	25
14	Selective Recognition and Sensing of Succinate vs. Other Aliphatic Dicarboxylates by Thioureaâ€Functionalized Gold Nanoparticles. ChemistrySelect, 2016, 1, 1057-1060.	1.5	6
15	Selective and Sensitive Chromogenic Detection of Trivalent Metal Cations in Water. Bulletin of the Chemical Society of Japan, 2016, 89, 498-500.	3.2	8
16	A Boron Dipyrromethene (BODIPY)â€Based Cu ^{II} –Bipyridine Complex for Highly Selective NO Detection. Chemistry - A European Journal, 2015, 21, 15486-15490.	3.3	19
17	A Simple System Based on a Thioureaâ€Modified Fluorescein for ωâ€Amino Acid Discrimination. European Journal of Organic Chemistry, 2015, 2015, 6597-6601	2.4	1
18	A New Simple Chromoâ€fluorogenic Probe for NO ₂ Detection in Air. Chemistry - A European Journal, 2015, 21, 8720-8722.	3.3	9

#	Article	IF	CITATIONS
19	5,5′-Bis-vanillin derivatives as discriminating sensors for trivalent cations. Tetrahedron Letters, 2015, 56, 3988-3991.	1.4	7
20	2,4-dinitrophenyl ether-containing chemodosimeters for the selective and sensitive â€~ <i>in vitro</i> ' and â€~ <i>in vivo</i> ' detection of hydrogen sulfide. Supramolecular Chemistry, 2015, 27, 244-254.	1.2	9
21	Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry. Chemical Communications, 2015, 51, 3077-3079.	4.1	27
22	A Chalconeâ€Based Highly Selective and Sensitive Chromofluorogenic Probe for Trivalent Metal Cations. ChemPlusChem, 2015, 80, 800-804.	2.8	12
23	Azide and sulfonylazide functionalized fluorophores for the selective and sensitive detection of hydrogen sulfide. Sensors and Actuators B: Chemical, 2015, 207, 987-994.	7.8	21
24	A new chromo-fluorogenic probe based on BODIPY for NO2 detection in air. Chemical Communications, 2015, 51, 1725-1727.	4.1	21
25	Highly Selective Fluorescence Detection of Hydrogen Sulfide by Using an Anthraceneâ€Functionalized Cyclam–Cu ^{II} Complex. European Journal of Inorganic Chemistry, 2014, 2014, 41-45.	2.0	37
26	A Chromogenic Probe for the Selective Recognition of Sarin and Soman Mimic DFP. ChemistryOpen, 2014, 3, 142-145.	1.9	28
27	Triarylcarbinol functionalized gold nanoparticles for the colorimetric detection of nerve agent simulants. Tetrahedron Letters, 2014, 55, 3093-3096.	1.4	14
28	A Chemosensor Bearing Sulfonyl Azide Moieties for Selective Chromoâ€Fluorogenic Hydrogen Sulfide Recognition in Aqueous Media and in Living Cells. European Journal of Organic Chemistry, 2014, 2014, 1848-1854.	2.4	19
29	Detection and discrimination of organophosphorus pesticides in water by using a colorimetric probe array. Sensors and Actuators B: Chemical, 2014, 202, 727-731.	7.8	22
30	Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. European Journal of Organic Chemistry, 2013, 2013, 4770-4779.	2.4	29
31	Boolean operations mediated by an ion-pair receptor of a multi-readout molecular logic gate. Chemical Communications, 2013, 49, 11056.	4.1	25
32	A new fluorescent "turn-on―chemodosimeter for the detection of hydrogen sulfide in water and living cells. RSC Advances, 2013, 3, 25690.	3.6	19
33	Binding and Fluorescent Sensing of Dicarboxylates by a Bis(calix[4]pyrrole)‣ubstituted BODIPY Dye. European Journal of Organic Chemistry, 2013, 2013, 1515-1520.	2.4	25
34	Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials. Journal of Materials Chemistry A, 2013, 1, 3561.	10.3	48
35	Neutral 1,3â€Diindolylureas for Nerve Agent Remediation. Chemistry - A European Journal, 2013, 19, 1586-1590	3.3	33
36	Selective and sensitive chromogenic detection of cyanide and HCN in solution and in gas phase. Chemical Communications, 2013, 49, 5669.	4.1	60

Margarita Parra Ãevarez

#	Article	IF	CITATIONS
37	Inversion of selectivity in anion recognition with conformationally blocked calix[4]pyrroles. Organic and Biomolecular Chemistry, 2012, 10, 8445.	2.8	9
38	Discrimination of nerve gases mimics and other organophosphorous derivatives in gas phase using a colorimetric probe array. Chemical Communications, 2012, 48, 10105.	4.1	51
39	Aryl carbinols as nerve agent probes. Influence of the conjugation on the sensing properties. New Journal of Chemistry, 2012, 36, 1485.	2.8	11
40	Design of Enzyme-Mediated Controlled Release Systems Based on Silica Mesoporous Supports Capped with Ester-Glycol Groups. Langmuir, 2012, 28, 14766-14776.	3.5	43
41	Nerve agent simulant detection by using chromogenic triaryl methane cation probes. Tetrahedron, 2012, 68, 8612-8616.	1.9	28
42	Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 2012, 4, 7237.	5.6	39
43	Selective Detection of Nerve Agent Simulants by Using Triarylmethanolâ€Based Chromogenic Chemodosimeters. European Journal of Organic Chemistry, 2012, 2012, 4937-4946.	2.4	38
44	Optical chemosensors and reagents to detect explosives. Chemical Society Reviews, 2012, 41, 1261-1296.	38.1	1,019
45	A new selective fluorogenic probe for trivalent cations. Chemical Communications, 2012, 48, 3000.	4.1	246
46	A new phenanthrene-based bis-oxime chemosensor for Fe(III) and Cr(III) discrimination. Tetrahedron, 2012, 68, 4882-4887.	1.9	46
47	Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chemical Communications, 2011, 47, 11885.	4.1	19
48	Chromogenic, Specific Detection of the Nerveâ€Agent Mimic DCNP (a Tabun Mimic). Chemistry - A European Journal, 2011, 17, 6931-6934.	3.3	89
49	A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal, 2011, 17, 11994-11997.	3.3	61
50	Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 2011, 47, 8313.	4.1	40
51	Chromoâ€Fluorogenic Detection of Nerveâ€Agent Mimics Using Triggered Cyclization Reactions in Push–Pull Dyes. Chemistry - an Asian Journal, 2010, 5, 1573-1585.	3.3	49
52	Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 5945-5948.	13.8	45
53	Unexplored Nucleophilic Ring Opening of Aziridines. Molecules, 2010, 15, 9135-9144.	3.8	2
54	Fluorescein-Based Thiourea Derivatives as Fluorogenic Sensors for Mono and Dicarboxylates. Sensor Letters, 2010, 8, 818-823.	0.4	2

#	Article	IF	CITATIONS
55	Fluorescent Cyclohexylâ€Based Chemosensors for Selective Sensing of TMA Malonate in DMSO/Water. European Journal of Organic Chemistry, 2009, 2009, 3673-3677.	2.4	10
56	Hg2+ and Cu2+ selective detection using a dual channel receptor based on thiopyrylium scaffoldings. Tetrahedron Letters, 2009, 50, 3885-3888.	1.4	44
57	Enantioselective sensing of dicarboxylates. Influence of the stoichiometry of the complexes on the sensing mechanism. Tetrahedron: Asymmetry, 2009, 20, 1468-1471.	1.8	14
58	Surfactant-assisted chromogenic sensing of cyanide in water. New Journal of Chemistry, 2009, 33, 1641.	2.8	64
59	Recent Developments in γ-Lactone Synthesis. Mini-Reviews in Organic Chemistry, 2009, 6, 345-358.	1.3	58
60	Addition of dianions of carboxylic acids to imines. Influence of the acid in the outcome of the reaction. Arkivoc, 2009, 2009, 172-184.	0.5	3
61	Complexation of α, ω-dicarboxylates by 3,3′-bis(5-phenyl-1,4-dioxo-2,3,5-triaza)-2,2′-bipyridine. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 203-207.	1.6	3
62	3,3′â€Disubstitued 2,2′â€Bipyridines as Carboxylate Receptors: Conformational Regulation of the Bipyridine Moiety. European Journal of Organic Chemistry, 2008, 2008, 1079-1084.	2.4	8
63	An Efficient Synthesis of Î ³ -Aminoacids and Attempts to Drive Its Enantioselectivity. Molecules, 2008, 13, 716-728.	3.8	4
64	Chromogenic detection of nerve agent mimics. Chemical Communications, 2008, , 6002.	4.1	98
65	Unusual Regioselectivity in the Opening of Epoxides by Carboxylic Acid Enediolates. Molecules, 2008, 13, 1303-1311.	3.8	4
66	Chromogenic and fluorogenic reagents for chemical warfare nerve agents' detection. Chemical Communications, 2007, , 4839.	4.1	189
67	A simple synthesis of γ-aminoacids. Tetrahedron Letters, 2007, 48, 3451-3453.	1.4	8
68	A New Approach to the Synthesis of \hat{I}^2 -Amino Acids. Synthesis, 2006, 2006, 3092-3098.	2.3	0
69	A new strategy for the synthesis of highly functionalised fluorinated compounds by reaction of lithium dianions of carboxylic acids with perfluoroketene dithioacetals. Tetrahedron, 2005, 61, 4395-4402.	1.9	9
70	New Synthetic Methods to 2-Pyridone Rings. Current Organic Chemistry, 2005, 9, 1757-1779.	1.6	190
71	New Synthesis of (±)-Sitophilate Using Carboxylic Acid Dianion Methodology - A Stereoselectivity Study. Synthesis, 2005, 2005, 3451-3455.	2.3	1
72	Carbanion Chemistry from Carboxylic Acids: a Special Issue in Honor of Professor Ramón Mestres on his 65th Birthday Molecules, 2004, 9, 264-265.	3.8	0

#	Article	IF	CITATIONS
73	Efficient Addition of Acid Enediolates to Epoxides. European Journal of Organic Chemistry, 2004, 2004, 2160-2165.	2.4	11
74	Reaction of lithium enediolates with perfluoroketene dithioacetals. Synthesis of α-trifluoromethyl γ-dicarboxylic acid derivatives. Tetrahedron Letters, 2004, 45, 8315-8317.	1.4	3
75	A Convenient Generation of Acetic Acid Dianion. European Journal of Organic Chemistry, 2003, 2003, 1386-1388.	2.4	14
76	Experimental and theoretical investigations for the tandem alkylation–isomerization reactions between unsaturated carboxylic acids and allyl halides. Tetrahedron, 2003, 59, 6233-6239.	1.9	20
77	New approach to condensed pyrid-2-ones. Arkivoc, 2003, 2002, 80-89.	0.5	1
78	STUDIES ON BICYCLO[3.3.1]NONANES FOR SYNTHESIS OF CYCLOOCTENES. Synthetic Communications, 2002, 32, 1829-1839.	2.1	3
79	Dienediolates of Carboxylic Acids in Synthesis. Recent Advances Current Organic Chemistry, 2002, 6, 283-302.	1.6	20
80	Enantioselective α-alkylation of unsaturated carboxylic acids using a chiral lithium amide. Tetrahedron: Asymmetry, 2001, 12, 915-921.	1.8	20
81	Regiocontrol in Alkylation of Lithium Dienediolates of Unsaturated Carboxylic Acids. Synlett, 2001, 2001, 0156-0159.	1.8	11
82	A New Synthetic Method to 2-Pyridones. Synthesis, 2000, 2000, 273-280.	2.3	33
83	Enediolates and dienediolates of carboxylic acids in synthesis. Synthesis of β,γ-epoxyacids from α-chloroketones. Tetrahedron Letters, 1998, 39, 1055-1058.	1.4	7
84	Alkylation of lithium dienediolates of butenoic acids. Regioselectivity effects of structure and leaving group of the alkylating agent. Tetrahedron, 1998, 54, 4357-4366.	1.9	36
85	Lithium enediolates and dienediolates of carboxylic acids in synthesis: Alkylation with secondary halides. Tetrahedron, 1998, 54, 15305-15320.	1.9	18
86	New conditions for the generation of dianions of carboxylic acids. Tetrahedron Letters, 1998, 39, 5443-5446.	1.4	18
87	Sex Pheromone of Chilo Suppressalis: Efficient Syntheses of (Z)-11-Hexadecenal, (Z)-13-Octadecenal And (Z)-9-Hexadecenal. Synthetic Communications, 1996, 26, 2329-2340.	2.1	13
88	Trienediolates of hexadienoic acids in synthesis. Addition to unsaturated ketones. A convergent approach to the synthesis of retinoic acids. Tetrahedron, 1995, 51, 3915-3928.	1.9	15
89	13C NMR studies of dianions of unsaturated carboxylic acids. Tetrahedron, 1994, 50, 5109-5118.	1.9	15
90	Trienediolates of hexadienoic acids in synthesis. synthesis of retinoic and nor-retinoic acids Tetrahedron, 1993, 49, 6089-6100.	1.9	10

#	Article	IF	CITATIONS
91	Microbial oxidation in synthesis: preparation of myo-inositol phosphates and related cyclitol derivatives from benzene. Tetrahedron, 1990, 46, 4995-5026.	1.9	90
92	Microbial oxidation in synthesis: Preparation of 6-deoxy cyclitol analogues of myo-inositol 1,4,5-trisphosphate from benzene. Tetrahedron Letters, 1989, 30, 3557-3560.	1.4	43
93	Dienediolates from unsaturated carboxylic acids. Reaction with para-substituted benzaldehydes. Electronic effects on regioselectivity. Journal of the Chemical Society Perkin Transactions 1, 1989, , 327.	0.9	20
94	A Study of the Thorpe-Ziegler Reaction in Very Mild Conditions. Synthetic Communications, 1984, 14, 967-972.	2.1	11