
Anthony J Hoffman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3432949/publications.pdf

Version: 2024-02-01

ANTHONY LHOFEMAN

#	Article	IF	CITATIONS
1	Potential dependent spectroelectrochemistry of electrofluorogenic dyes on indiumâ€ŧin oxide. Electrochemical Science Advances, 2022, 2, e2100094.	2.8	5
2	Spatiotemporal distribution of chemical signatures exhibited by Myxococcus xanthus in response to metabolic conditions. Analytical and Bioanalytical Chemistry, 2022, 414, 1691-1698.	3.7	0
3	Predicting early failure of quantum cascade lasers during accelerated burn-in testing using machine learning. Scientific Reports, 2022, 12, .	3.3	2
4	Temperature Dependence of Electron and Hole Impact Ionization Coefficients in GaN. IEEE Transactions on Electron Devices, 2021, 68, 1228-1234.	3.0	11
5	Confined hyperbolic metasurface modes for structured illumination microscopy. Optics Express, 2021, 29, 42331.	3.4	7
6	Far-Field Thermal Emission from Optical Antennas on an Epsilon-Near-Zero Substrate. , 2020, , .		0
7	Colloidal Nanosurfactants for 3D Conformal Printing of 2D van der Waals Materials. Advanced Materials, 2020, 32, e2003081.	21.0	23
8	Surface Phonon Polariton Modes in Zinc Oxide Nanoparticles. , 2020, , .		0
9	Broadband Epsilon-Near-Zero Behavior in Deep-etched Grating Metasurfaces. , 2020, , .		0
10	Thermal Emission from Multi-mode Optical Antennas on an Epsilon-Near-Zero Substrate. , 2020, , .		0
11	High Internal Quantum Efficiency from AlGaN-delta-GaN Quantum Well at 260 nm. , 2020, , .		3
12	Mid-infrared, long-wave infrared, and terahertz photonics: introduction. Optics Express, 2020, 28, 14169.	3.4	4
13	Engineering the Berreman mode in mid-infrared polar materials. Optics Express, 2020, 28, 28590.	3.4	14
14	Monochromatic Multimode Antennas on Epsilonâ€Nearâ€Zero Materials. Advanced Optical Materials, 2019, 7, 1800826.	7.3	12
15	Far-Infrared Emission from an Electrically-Injected Semiconductor Device. , 2018, , .		0
16	Electromagnetic wave transmittance control using self-organized plasma lattice metamaterial. Journal of Applied Physics, 2018, 124, .	2.5	17
17	Experimental characterization of impact ionization coefficients for electrons and holes in GaN grown on bulk GaN substrates. Applied Physics Letters, 2018, 112, .	3.3	77
18	Engineering optical emission in sub-diffraction hyperbolic metamaterial resonators. Optics Express, 2018, 26, 4382.	3.4	12

ANTHONY J HOFFMAN

#	Article	IF	CITATIONS
19	Engineering Optical Emission of Sub-diffraction Hyperbolic Metamaterial Resonators. , 2018, , .		0
20	Engineering the Coupling Between the Berreman Mode and Nanobar Antennas in Epsilon-near-zero Materials. , 2018, , .		0
21	Experiments on a Plasma-based Metamaterial at Microwave Fequencies. , 2017, , .		2
22	Mid- and far-infrared optical characterization of monoclinic HfO2 nanoparticles and evidence of localized surface phonon polaritons. , 2017, , .		0
23	Subdiffraction Confinement in All-Semiconductor Hyperbolic Metamaterial Resonators. ACS Photonics, 2017, 4, 1621-1626.	6.6	20
24	Mid-Infrared Waveguide Array Inter-Chip Coupling Using Optical Quilt Packaging. IEEE Photonics Technology Letters, 2017, 29, 755-758.	2.5	2
25	Importance of coherence in models of mid-infrared quantum cascade laser gain spectra. Journal of Optics (United Kingdom), 2017, 19, 095201.	2.2	0
26	Exciting Localized Modes in Polar Epsilon-Near-Zero Materials. , 2017, , .		0
27	Optical path length and trajectory stability in rotationally asymmetric multipass cells. Optics Express, 2016, 24, 19497.	3.4	5
28	Hafnia (HfO ₂) nanoparticles as an X-ray contrast agent and mid-infrared biosensor. Nanoscale, 2016, 8, 13627-13637.	5.6	62
29	Engineering the Reststrahlen band with hybrid plasmon/ phonon excitations. MRS Communications, 2016, 6, 1-8.	1.8	20
30	Nanoscale Hyperbolic Metamaterial Resonators in Semiconductors. , 2016, , .		1
31	Mid- and Far-infrared Nanophotonics: Learning to Live with Phonons. , 2016, , .		0
32	Photonic materials, structures and devices for Reststrahlen optics. Optics Express, 2015, 23, A1418.	3.4	57
33	Localized surface phonon polariton resonances in polar gallium nitride. Applied Physics Letters, 2015, 107, .	3.3	54
34	Localized Surface Phonon Polariton Resonators in GaN. , 2015, , .		1
35	Selective absorbers and thermal emitters for far-infrared wavelengths. Applied Physics Letters, 2015, 107, .	3.3	31
36	Engineering absorption and blackbody radiation in the far-infrared with surface phonon polaritons on gallium phosphide. Applied Physics Letters, 2014, 104, .	3.3	41

ANTHONY J HOFFMAN

#	Article	IF	CITATIONS
37	Optical Quilt Packaging: A New Chip-to-Chip Optical Coupling and Alignment Process for Modular Sensors. , 2014, , .		6
38	FDTD modeling of chip-to-chip waveguide coupling via optical quilt packaging. Proceedings of SPIE, 2013, , .	0.8	2
39	Tunable coupling cavity QED with a superconducting artificial atom. , 2012, , .		0
40	Mid-infrared quantum cascade lasers. Nature Photonics, 2012, 6, 432-439.	31.4	499
41	Tunable Coupling in Circuit Quantum Electrodynamics Using a Superconducting Charge Qubit with a <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>V</mml:mi></mml:math> -Shaped Energy Level Diagram. Physical Review Letters. 2011. 106. 083601.	7.8	144
42	Enhanced bandwidth and reduced dispersion through stacking multiple optical metamaterials. Optics Express, 2011, 19, 14990.	3.4	5
43	Dispersive Photon Blockade in a Superconducting Circuit. Physical Review Letters, 2011, 107, 053602.	7.8	249
44	Coherent control of a superconducting qubit with dynamically tunable qubit-cavity coupling. Physical Review B, 2011, 84, .	3.2	41
45	Short Injector Quantum Cascade Lasers. IEEE Journal of Quantum Electronics, 2010, 46, 591-600.	1.9	10
46	Highly power-efficient quantum cascade lasers. Nature Photonics, 2010, 4, 95-98.	31.4	150
47	Photon Blockade in Circuit Quantum Electrodynamics. , 2010, , .		0
48	Thermoelectric Effect in Quantum Cascade Lasers. IEEE Photonics Journal, 2010, 2, 500-509.	2.0	9
49	Analytical technique for subwavelength far field imaging. Applied Physics Letters, 2010, 97, 101103.	3.3	16
50	Limitations to the Power Output and Efficiency of Mid-Infrared Quantum Cascade Lasers Imposed by Transport. , 2010, , .		2
51	Analytical Technique for Determining the Size of Subwavelength Focal Spots in far Field. , 2010, , .		0
52	Broadband, Low-Dispersion, Mid-Infrared Metamaterials. , 2010, , .		0
53	Negative Differential Resistance and Pulse Instabilities in Minimalized Quantum Cascade Laser Structures. , 2009, , .		0
54	Intersubband Absorption Loss in High-Performance Mid-Infrared Quantum Cascade Lasers. , 2009, , .		1

ANTHONY J HOFFMAN

#	Article	IF	CITATIONS
55	Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy. Applied Physics Letters, 2009, 94, .	3.3	19
56	Wavelength selection for quantum cascade lasers by cavity length. Applied Physics Letters, 2009, 94, 091109.	3.3	13
57	High k-space lasing in a dual-wavelength quantum cascade laser. Nature Photonics, 2009, 3, 50-54.	31.4	11
58	Rapid and Minimally Invasive Quantum Cascade Wafer Testing. IEEE Photonics Technology Letters, 2009, 21, 531-533.	2.5	0
59	Role of interface roughness in the transport and lasing characteristics of quantum-cascade lasers. Applied Physics Letters, 2009, 94, 091101.	3.3	74
60	Lasing-induced reduction in core heating in high wall plug efficiency quantum cascade lasers. Applied Physics Letters, 2009, 94, .	3.3	1
61	Midinfrared semiconductor optical metamaterials. Journal of Applied Physics, 2009, 105, .	2.5	54
62	Voltage Tunability of Quantum Cascade Lasers. IEEE Journal of Quantum Electronics, 2009, 45, 730-736.	1.9	19
63	Voltage tuning of gain spectra in quantum cascade lasers. Proceedings of SPIE, 2009, , .	0.8	Ο
64	Rapid and minimally invasive quantum cascade wafer testing. Proceedings of SPIE, 2009, , .	0.8	0
65	Ultra-Low Voltage Defect Quantum Cascade Lasers. , 2009, , .		Ο
66	Enhancing Wavelength Selection for Quantum Cascade Laser Based Chemical Sensors by Cavity Length Variation. , 2009, , .		0
67	Instantaneous Power and Threshold in Continuous Wave Quantum Cascade Lasers. , 2009, , .		Ο
68	Quantum Cascade Lasers with Ultra-Strong Coupling Injection. , 2009, , .		0
69	Role of Interface Roughness in the Transport and Lasing Characteristics of Quantum-Cascade lasers. , 2009, , .		Ο
70	Sub-diffraction negative and positive index modes in mid-infrared waveguides. Optics Express, 2008, 16, 16404.	3.4	6
71	The effect of injector barrier thickness and doping level on current transport and optical transition width in a λâ^¼48.0â€,μm quantum cascade structure. Applied Physics Letters, 2008, 93, 191107.	3.3	2
72	ZnCdSeâ^•ZnCdMgSe quantum cascade electroluminescence. Applied Physics Letters, 2008, 92, 121105.	3.3	33

#	Article	IF	CITATIONS
73	Low voltage defect heterogeneous quantum cascade laser. , 2008, , .		Ο
74	Excited-state absorption in high-power mid-infrared quantum cascade lasers. , 2008, , .		0
75	Laser action at high k-space values in anti-correlated multi-wavelength quantum cascade lasers. , 2008, , .		0
76	Intaersubband Electroluminescence from a ZnCdSe/ZnCdMgSe quantum cascade structure. , 2008, , .		0
77	Low-Voltage Defect Quantum Cascade Laser with Heterogeneous Injector Regions. , 2007, , .		0
78	Effect of injection barrier thickness and doping on transport and gain in a l̂» = 8.2 l̂¼ quantum cascade laser. , 2007, , .		0
79	DX-like centers in InAsâ^•GaAs QDIPs observed by polarization-dependent Fourier transform infrared spectroscopy. Journal of Vacuum Science & Technology B, 2007, 25, 1108.	1.3	3
80	Cascaded Emission from a Dual-Wavelength Quantum Cascade Laser. , 2007, , .		0
81	Evidence of cascaded emission in a dual-wavelength quantum cascade laser. Applied Physics Letters, 2007, 90, 091104.	3.3	12
82	Negative refraction in mid-infrared semiconductor metamaterials. , 2007, , .		6
83	High Performance Quantum Cascade Lasers Grown by MOCVD with/without Lateral Regrowth. AIP Conference Proceedings, 2007, , .	0.4	0
84	Low voltage-defect quantum cascade laser with heterogeneous injector regions. Optics Express, 2007, 15, 15818.	3.4	12
85	High-Performance Quantum Cascade Lasers: Optimized Design Through Waveguide and Thermal Modeling. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1054-1064.	2.9	44
86	Probing dopant incorporation in InAs/GaAs QDIPs by polarization-dependent Fourier transform infrared spectroscopy. Infrared Physics and Technology, 2007, 51, 131-135.	2.9	7
87	Negative refraction in semiconductor metamaterials. Nature Materials, 2007, 6, 946-950.	27.5	763
88	Mid-infrared Excitation of Plasmonic Resonances in Highly Anisotropic Layered Semiconductor Structures. AIP Conference Proceedings, 2007, , .	0.4	0
89	Room-temperature continuous-wave quantum cascade lasers grown by MOCVD without lateral regrowth. IEEE Photonics Technology Letters, 2006, 18, 1347-1349.	2.5	88