Yohei Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3432703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers. Science, 2006, 314, 1761-1764.	12.6	642
2	Dramatic Effect of Dispersed Carbon Nanotubes on the Mechanical and Electroconductive Properties of Polymers Derived from Ionic Liquids. Small, 2006, 2, 554-560.	10.0	221
3	Ambipolar-transporting coaxial nanotubes with a tailored molecular graphene–fullerene heterojunction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21051-21056.	7.1	161
4	Systematic Studies on Structural Parameters for Nanotubular Assembly of Hexa- <i>peri</i> -hexabenzocoronenes. Journal of the American Chemical Society, 2008, 130, 9434-9440.	13.7	149
5	Segregated and Alternately Stacked Donor/Acceptor Nanodomains in Tubular Morphology Tailored with Zinc Porphyrin–C ₆₀ Amphiphilic Dyads: Clear Geometrical Effects on Photoconduction. Journal of the American Chemical Society, 2012, 134, 2524-2527.	13.7	119
6	Chiroselective Assembly of a Chiral Porphyrinâ^'Fullerene Dyad: Photoconductive Nanofiber with a Top-Class Ambipolar Charge-Carrier Mobility. Journal of the American Chemical Society, 2010, 132, 6628-6629.	13.7	118
7	"Bicontinuous Cubic―Liquid Crystalline Materials from Discotic Molecules: A Special Effect of Paraffinic Side Chains with Ionic Liquid Pendants. Journal of the American Chemical Society, 2009, 131, 17722-17723.	13.7	107
8	Molecular Engineering of Coaxial Donorâ^'Acceptor Heterojunction by Coassembly of Two Different Hexabenzocoronenes:  Graphitic Nanotubes with Enhanced Photoconducting Properties. Journal of the American Chemical Society, 2007, 129, 9276-9277.	13.7	96
9	Discotic Ionic Liquid Crystals of Triphenylene as Dispersants for Orienting Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2012, 51, 8490-8494.	13.8	81
10	Self-assembled conjugated polymer spheres as fluorescent microresonators. Scientific Reports, 2014, 4, 5902.	3.3	80
11	Spherical Assemblies from π-Conjugated Alternating Copolymers: Toward Optoelectronic Colloidal Crystals. Journal of the American Chemical Society, 2013, 135, 870-876.	13.7	75
12	Hexabenzocoronene Graphitic Nanotube Appended with Dithienylethene Pendants: Photochromism for the Modulation of Photoconductivity. Advanced Materials, 2010, 22, 829-832.	21.0	70
13	Color-Tunable Resonant Photoluminescence and Cavity-Mediated Multistep Energy Transfer Cascade. ACS Nano, 2016, 10, 7058-7063.	14.6	67
14	Programmed self-assembly of large <i>Ï€</i> -conjugated molecules into electroactive one-dimensional nanostructures. Science and Technology of Advanced Materials, 2012, 13, 033001.	6.1	56
15	Ï€-Electronic Co-crystal Microcavities with Selective Vibronic-Mode Light Amplification: Toward Förster Resonance Energy Transfer Lasing. Nano Letters, 2018, 18, 4396-4402.	9.1	54
16	Lowâ€Threshold Whispering Gallery Mode Lasing from Selfâ€Assembled Microspheres of Singleâ€Sort Conjugated Polymers. Advanced Optical Materials, 2017, 5, 1700123.	7.3	52
17	Robust Angular Anisotropy of Circularly Polarized Luminescence from a Single Twisted-Bipolar Polymeric Microsphere. Journal of the American Chemical Society, 2021, 143, 8772-8779.	13.7	47
18	Conjugated Polymer Blend Microspheres for Efficient, Long-Range Light Energy Transfer. ACS Nano, 2016, 10, 5543-5549.	14.6	46

Υομεί Υαμαμότο

#	Article	IF	CITATIONS
19	Whispering Gallery Resonance from Self-Assembled Microspheres of Highly Fluorescent Isolated Conjugated Polymers. Macromolecules, 2015, 48, 3928-3933.	4.8	45
20	Photoconductivity of Self-Assembled Hexabenzocoronene Nanotube: Insight into the Charge Carrier Mobilities on Local and Long-Range Scales. Journal of Physical Chemistry Letters, 2011, 2, 2549-2554.	4.6	39
21	Optical microresonator arrays of fluorescence-switchable diarylethenes with unreplicable spectral fingerprints. Materials Horizons, 2020, 7, 1801-1808.	12.2	36
22	Mechanically Flexible and Optically Tunable Organic Crystal Resonator. Advanced Optical Materials, 2022, 10, 2101808.	7.3	34
23	Synthesis and characterization of citrus-derived pectin nanoparticles based on their degree of esterification. Journal of Materials Research, 2020, 35, 1514-1522.	2.6	27
24	FRET-mediated near infrared whispering gallery modes: studies on the relevance of intracavity energy transfer with <i>Q</i> -factors. Materials Chemistry Frontiers, 2018, 2, 270-274.	5.9	26
25	Photochemically Switchable Interconnected Microcavities for Allâ€Organic Optical Logic Gate. Advanced Functional Materials, 2021, 31, 2103685.	14.9	24
26	Peptide Cross-linkers: Immobilization of Platinum Nanoparticles Highly Dispersed on Graphene Oxide Nanosheets with Enhanced Photocatalytic Activities. ACS Applied Materials & Interfaces, 2017, 9, 9996-10002.	8.0	22
27	Unusual Sideâ€Chain Effects on Charge arrier Lifetime in Discotic Liquid Crystals. Chemistry - an Asian Journal, 2009, 4, 876-880.	3.3	21
28	Spherical resonators from π-conjugated polymers. Polymer Journal, 2016, 48, 1045-1050.	2.7	21
29	Singleâ€Crystalline Optical Microcavities from Luminescent Dendrimers. Angewandte Chemie - International Edition, 2020, 59, 12674-12679.	13.8	21
30	Molecular simulation on the stability and adsorption properties of choline-based ionic liquids/IRMOF-1 hybrid composite for selective H2S/CO2 capture. Journal of Hazardous Materials, 2020, 399, 123008.	12.4	20
31	Tetramethylbithiophene in π-conjugated alternating copolymers as an effective structural component for the formation of spherical assemblies. Polymer Chemistry, 2014, 5, 3583-3587.	3.9	19
32	A fluorescent microporous crystalline dendrimer discriminates vapour molecules. Chemical Communications, 2018, 54, 2534-2537.	4.1	19
33	Carbazole – Dibenzofuran Dyads as Metalâ€Free Singleâ€Component Whiteâ€Color Photoemitters. Advanced Functional Materials, 2019, 29, 1805824.	14.9	19
34	Detection of boson peak and fractal dynamics of disordered systems using terahertz spectroscopy. Physical Review E, 2020, 102, 022502.	2.1	19
35	Charge Transport Properties of Hexabenzocoronene Nanotubes by Field Effect: Influence of the Oligoether Side Chains on the Mobility. Chemistry Letters, 2009, 38, 888-889.	1.3	17
36	Liquid Polymer Eutectic Mixture for Integrated Extractive-Oxidative Desulfurization of Fuel Oil: An Optimization Study via Response Surface Methodology. Processes, 2020, 8, 848.	2.8	17

Υόμει Υαμαμότο

#	Article	IF	CITATIONS
37	Optically induced mode splitting in self-assembled, high quality-factor conjugated polymer microcavities. Scientific Reports, 2016, 6, 19635.	3.3	16
38	Polymer Optical Microcavity Sensor for Volatile Organic Compounds with Distinct Selectivity toward Aromatic Hydrocarbons. ACS Omega, 2021, 6, 21066-21070.	3.5	16
39	Silk fibroin microspheres as optical resonators for wide-range humidity sensing and biodegradable lasers. Materials Chemistry Frontiers, 2021, 5, 5653-5657.	5.9	15
40	Sigmoidally hydrochromic molecular porous crystal with rotatable dendrons. Communications Chemistry, 2020, 3, .	4.5	14
41	A highly sensitive humidity sensor based on an aggregation-induced emission luminogen-appended hygroscopic polymer microresonator. Materials Chemistry Frontiers, 2021, 5, 799-803.	5.9	14
42	Self-assembled polycarbazole microspheres as single-component, white-colour resonant photoemitters. RSC Advances, 2016, 6, 52854-52857.	3.6	13
43	BioPerine Encapsulated Nanoformulation for Overcoming Drug-Resistant Breast Cancers. Asian Journal of Pharmaceutical Sciences, 2020, 15, 701-712.	9.1	13
44	Chiroptical switching caused by crystalline/liquid crystalline phase transition of a chiral bowl-shaped molecule. Chemical Communications, 2016, 52, 4585-4588.	4.1	11
45	From Linear to Foldamer and Assembly: Hierarchical Transformation of a Coplanar Conjugated Polymer into a Microsphere. Journal of Physical Chemistry Letters, 2017, 8, 4580-4586.	4.6	11
46	Possible One-Dimensional Helical Conductor: Hexa- <i>peri</i> -hexabenzocoronene Nanotube. Journal of the Physical Society of Japan, 2008, 77, 034710.	1.6	10
47	Monosubstitution at the 4-position of 2,7-carbazolylene expands the structural design and fundamental properties of D-ï€-A copolymers for organic photovoltaic cells. Polymer Chemistry, 2015, 6, 5921-5930.	3.9	10
48	Dipole‣witchable Poly(<i>para</i> â€phenyleneethynylene)s: Ferroelectric Conjugated Polymers. Angewandte Chemie - International Edition, 2018, 57, 17019-17022.	13.8	10
49	Nanoporous Fluorescent Microresonators for Non-wired Sensing of Volatile Organic Compounds down to the ppb Level. ACS Applied Polymer Materials, 2022, 4, 1065-1070.	4.4	10
50	Magnetic-field-induced enhancement of crystallinity and field-effect mobilities in phthalocyanine thin films. Applied Physics Letters, 2013, 103, 043301.	3.3	9
51	Control of molecular orientation and morphology in organic bilayer solar cells: Copper phthalocyanine on gold nanodots. Thin Solid Films, 2014, 562, 467-470.	1.8	9
52	Energy Transferâ€Assisted Whispering Gallery Mode Lasing in Conjugated Polymer/Europium Hybrid Microsphere Resonators. Chemistry - an Asian Journal, 2019, 14, 1637-1641.	3.3	9
53	Effect of Acceptor Lamination on Photocarrier Dynamics in Hole Transporting Hexabenzocoronene Nanotubular Self-Assembly. Journal of Physical Chemistry C, 2013, 117, 15295-15305.	3.1	8
54	Cysteine-containing oligopeptide β-sheets as redispersants for agglomerated metal nanoparticles. Journal of Materials Chemistry A, 2015, 3, 17612-17619.	10.3	8

Υόμει Υαμαμότο

#	Article	IF	CITATIONS
55	Excellent Oxygen Reduction Reaction Performance in Self-Assembled Amyloid-β/Platinum Nanoparticle Hybrids with Effective Platinum–Nitrogen Bond Formation. ACS Applied Energy Materials, 2019, 2, 6536-6541.	5.1	8
56	Chargeâ€5eparated Fmocâ€Peptide βâ€5heets: Sequenceâ€5econdary Structure Relationship for Arranging Charged Side Chains on Both Sides. Asian Journal of Organic Chemistry, 2014, 3, 1182-1188.	2.7	7
57	Enwrapping Conjugated Polymer Microspheres with Graphene Oxide Nanosheets. Chemistry Letters, 2016, 45, 1024-1026.	1.3	7
58	Solvophobicity-directed assembly of microporous molecular crystals. Communications Chemistry, 2021, 4, .	4.5	7
59	Temperature Dependence of Magnetophotoconductance in One-Dimensional Molecular Assembly of Hexabenzocoronene. ACS Omega, 2017, 2, 3260-3266.	3.5	6
60	Conjugated Copolymers of Poly(arylenevinylene)s: Synthesis by Ring-Opening Metathesis Polymerization, Film Morphology, and Resonant Luminescence from Microspheres. ACS Applied Polymer Materials, 2019, 1, 2240-2248.	4.4	6
61	Fast Response Organic Supramolecular Transistors Utilizing Inâ€6itu Ï€â€ŀon Gels. Advanced Materials, 2021, 33, e2006061.	21.0	6
62	Polychromatic Photoluminescence of Polymorph Boron Dipyrromethene Crystals and Heterostructures. Journal of Physical Chemistry C, 2019, 123, 5061-5066.	3.1	5
63	Singleâ€Crystalline Optical Microcavities from Luminescent Dendrimers. Angewandte Chemie, 2020, 132, 12774-12779.	2.0	5
64	Fluorescence Switchable Conjugated Polymer Microdisk Arrays by Cosolvent Vapor Annealing. Polymers, 2021, 13, 269.	4.5	5
65	Significant Enhancement of Hole Transport Ability in Conjugated Polymer/Fullerene Bulk Heterojunction Microspheres. ACS Applied Polymer Materials, 2019, 1, 118-123.	4.4	4
66	Long-wavelength visible to near infrared photoluminescence from carbon-bridged styrylstilbene and thiadiazole conjugates in organic and aqueous media. RSC Advances, 2021, 11, 6008-6013.	3.6	4
67	Facile light-initiated radical generation from 4-substituted pyridine under ambient conditions. Chemical Communications, 2020, 56, 6937-6940.	4.1	4
68	Interface Dependence of Charge Formation Dynamics in Hexabenzocoronene–C\$_{60}\$. Applied Physics Express, 2012, 5, 062401.	2.4	3
69	Fabrication of Polymer Microspheres for Optical Resonator and Laser Applications. Journal of Visualized Experiments, 2017, , .	0.3	3
70	Modulation of Whispering Gallery Modes from Fluorescent Copolymer Microsphere Resonators by Protonation/Deprotonation. Chemistry Letters, 2019, 48, 607-610.	1.3	3
71	Enhancement of grain size and crystallinity of thin layers of pentacene grown under magnetic field. Thin Solid Films, 2016, 603, 408-412.	1.8	2
72	Controlled Self-assembly of Oligopeptides Bearing Electron Donor and Acceptor Units on the Side Chains to Form β-Sheets with Selective π-Stacking Configuration. Chemistry Letters, 2017, 46, 423-425.	1.3	2

Υόμει Υαμαμότο

#	Article	IF	CITATIONS
73	Lasers: Low-Threshold Whispering Gallery Mode Lasing from Self-Assembled Microspheres of Single-Sort Conjugated Polymers (Advanced Optical Materials 10/2017). Advanced Optical Materials, 2017, 5, .	7.3	2
74	Dipoleâ€Switchable Poly(<i>para</i> â€phenyleneethynylene)s: Ferroelectric Conjugated Polymers. Angewandte Chemie, 2018, 130, 17265-17268.	2.0	2
75	Spatially resolved investigation of the defect states in methylammonium lead iodide perovskite bicrystals. Journal of Materials Chemistry C, 2019, 7, 13156-13160.	5.5	2
76	Self-assembly and adsorption properties of Fmoc-substituted short peptide bearing charged side chains. AIP Conference Proceedings, 2015, , .	0.4	1
77	Whispering gallery mode photoemission from self-assembled poly-para-phenylenevinylene microspheres. AIP Conference Proceedings, 2015, , .	0.4	1
78	Nanosphere Formation of π-Conjugated Dendrimers by Simple Precipitation Method. Chemistry Letters, 2019, 48, 1240-1243.	1.3	1
79	Hydrothermal crosslinking of poly(fluorenylamine) with styryl side chains to produce insoluble fluorescent microparticles. Polymer Journal, 0, , .	2.7	1
80	Terahertz Time-Domain Spectroscopy of Protein Myoglobin: Detection of Boson Peak and Fracton. , 2018, , .		0
81	Detection of Boson Peak and Fractal Dynamics of Protein by Terahertz Time-Domain Spectroscopy. , 2018, , .		0
82	Terahertz Spectroscopy on Myoglobin: Boson Peak and Fracton. , 2019, , .		0
83	Terahertz Dynamics of Sodium Silicate Glass Investigated by Terahertz Time-Domain Spectroscopy. , 2021, , .		0
84	Boson Peak and Fracton of Polymethyl Methacrylate Detected by Terahertz-band Infrared and Raman Spectroscopies. , 2021, , .		0
85	Self-Assembled Conjugated Polymer Microsphere Resonators and Lasers. The Review of Laser Engineering, 2018, 46, 25.	0.0	0