
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3432405/publications.pdf Version: 2024-02-01



YUE THENC

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Graphene-like nanoribbons periodically embedded with four- and eight-membered rings. Nature<br>Communications, 2017, 8, 14924.                                                                                      | 12.8 | 139       |
| 2  | Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional. Applied<br>Physics A: Materials Science and Processing, 2008, 91, 59-63.                                              | 2.3  | 113       |
| 3  | Nonpolar resistive switching in Mn-doped BiFeO <sub>3</sub> thin films by chemical solution deposition. Applied Physics Letters, 2012, 101, 062902.                                                                 | 3.3  | 103       |
| 4  | Giant piezoelectric resistance in ferroelectric tunnel junctions. Nanotechnology, 2009, 20, 075401.                                                                                                                 | 2.6  | 78        |
| 5  | Characteristics and controllability of vortices in ferromagnetics, ferroelectrics, and multiferroics.<br>Reports on Progress in Physics, 2017, 80, 086501.                                                          | 20.1 | 70        |
| 6  | Thermodynamic modeling of critical properties of ferroelectric superlattices in nano-scale. Applied<br>Physics A: Materials Science and Processing, 2009, 97, 617-626.                                              | 2.3  | 67        |
| 7  | Recent Progress on Vanadium Dioxide Nanostructures and Devices: Fabrication, Properties,<br>Applications and Perspectives. Nanomaterials, 2021, 11, 338.                                                            | 4.1  | 66        |
| 8  | Vortex Domain Structure in Ferroelectric Nanoplatelets and Control of its Transformation by Mechanical Load. Scientific Reports, 2012, 2, 796.                                                                      | 3.3  | 64        |
| 9  | Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications. Materials, 2014, 7, 6377-6485.                                                                                                   | 2.9  | 56        |
| 10 | Utilizing mechanical loads and flexoelectricity to induce and control complicated evolution of<br>domain patterns in ferroelectric nanofilms. Journal of the Mechanics and Physics of Solids, 2015, 79,<br>108-133. | 4.8  | 52        |
| 11 | Tunable Tunneling Electroresistance in Ferroelectric Tunnel Junctions by Mechanical Loads. ACS<br>Nano, 2011, 5, 1649-1656.                                                                                         | 14.6 | 50        |
| 12 | Vortex switching in ferroelectric nanodots and its feasibility by a homogeneous electric field: Effects of substrate, dislocations and local clamping force. Acta Materialia, 2015, 88, 41-54.                      | 7.9  | 46        |
| 13 | Controllability of Vortex Domain Structure in Ferroelectric Nanodot: Fruitful Domain Patterns and<br>Transformation Paths. Scientific Reports, 2014, 4, 3946.                                                       | 3.3  | 45        |
| 14 | Highly uniform bipolar resistive switching characteristics in TiO2/BaTiO3/TiO2 multilayer. Applied Physics Letters, 2013, 103, .                                                                                    | 3.3  | 40        |
| 15 | Mechanical switching of ferroelectric domains beyond flexoelectricity. Journal of the Mechanics and<br>Physics of Solids, 2018, 111, 43-66.                                                                         | 4.8  | 37        |
| 16 | High Current Density and Low Hysteresis Effect of Planar Perovskite Solar Cells via PCBM-doping and<br>Interfacial Improvement. ACS Applied Materials & Interfaces, 2018, 10, 29954-29964.                          | 8.0  | 35        |
| 17 | Pulse-Loaded Ferroelectric Nanowire as an Alternating Current Source. Nano Letters, 2008, 8, 3131-3136.                                                                                                             | 9.1  | 32        |
| 18 | Mechanical switching in ferroelectrics by shear stress and its implications on charged domain wall generation and vortex memory devices. RSC Advances, 2018, 8, 4434-4444.                                          | 3.6  | 24        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ab initio study on the size effect of symmetric and asymmetric ferroelectric tunnel junctions: A comprehensive picture with regard to the details of electrode/ferroelectric interfaces. Journal of Applied Physics, 2013, 114, 064105. | 2.5 | 23        |
| 20 | Effect of Mechanical Loads on Stability of Nanodomains in Ferroelectric Ultrathin Films: Towards<br>Flexible Erasing of the Non-Volatile Memories. Scientific Reports, 2014, 4, 5339.                                                   | 3.3 | 23        |
| 21 | Direct electrical switching of ferroelectric vortices by a sweeping biased tip. Acta Materialia, 2018, 158, 23-37.                                                                                                                      | 7.9 | 23        |
| 22 | Phase diagram of ferroelectric nanowires and its mechanical force controllability. Applied Physics<br>Letters, 2010, 96, 232904.                                                                                                        | 3.3 | 22        |
| 23 | Large and Tunable Polar-Toroidal Coupling in Ferroelectric Composite Nanowires toward Superior Electromechanical Responses. Scientific Reports, 2015, 5, 11165.                                                                         | 3.3 | 22        |
| 24 | Controlling polar-toroidal multi-order states in twisted ferroelectric nanowires. Npj Computational<br>Materials, 2018, 4, .                                                                                                            | 8.7 | 18        |
| 25 | Stretchable ferroelectric field-effect-transistor with multi-level storage capacity and photo-modulated resistance. Applied Physics Letters, 2019, 115, .                                                                               | 3.3 | 18        |
| 26 | Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review. Materials, 2014,<br>7, 6502-6568.                                                                                                                  | 2.9 | 17        |
| 27 | First-principles calculations of size-dependent giant electroresistance effect in nanoscale asymmetric ferroelectric tunnel junctions. Journal of Applied Physics, 2012, 111, 074102.                                                   | 2.5 | 16        |
| 28 | Structural transition and temperature-driven conductivity switching of single crystalline<br>VO <sub>2</sub> (A) nanowires. RSC Advances, 2014, 4, 64021-64026.                                                                         | 3.6 | 16        |
| 29 | Current-Driven Skyrmion Motion Beyond Linear Regime: Interplay between Skyrmion Transport and Deformation. Physical Review Applied, 2020, 14, .                                                                                         | 3.8 | 16        |
| 30 | Impact of applied strain on the electron transport through ferroelectric tunnel junctions. Applied<br>Physics Letters, 2010, 97, 012905.                                                                                                | 3.3 | 15        |
| 31 | Effects of the surface charge screening and temperature on the vortex domain patterns of ferroelectric nanodots. Journal of Applied Physics, 2012, 112, 104108.                                                                         | 2.5 | 15        |
| 32 | Critical properties of nanoscale asymmetric ferroelectric tunnel junctions or capacitors. Acta<br>Materialia, 2012, 60, 1857-1870.                                                                                                      | 7.9 | 15        |
| 33 | Diverse interface effects on ferroelectricity and magnetoelectric coupling in asymmetric<br>multiferroic tunnel junctions: the role of the interfacial bonding structure. Physical Chemistry<br>Chemical Physics, 2016, 18, 2850-2858.  | 2.8 | 14        |
| 34 | Thermally Induced Transformation of Nonhexagonal Carbon Rings in Graphene-like Nanoribbons.<br>Journal of Physical Chemistry C, 2018, 122, 9586-9592.                                                                                   | 3.1 | 14        |
| 35 | Torsion-induced vortex switching and skyrmion-like state in ferroelectric nanodisks. Journal of<br>Physics Condensed Matter, 2018, 30, 465304.                                                                                          | 1.8 | 14        |
| 36 | On the mechanisms of tip-force induced switching in ferroelectric thin films: the crossover of depolarization, shear strain and flexoelectricity. Journal of Physics Condensed Matter, 2019, 31, 145701.                                | 1.8 | 14        |

| #  | Article                                                                                                                                                                                                                                                                                         | IF                | CITATIONS        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|
| 37 | Improvement of pyroelectric figures of merit in zirconia-doped congruent lithium niobate single crystals. Journal of Materials Science, 2016, 51, 3155-3161.                                                                                                                                    | 3.7               | 13               |
| 38 | Enhanced out-of-plane piezoelectric effect in <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mrow><mml:msub><mml:mi>In</mml:mi><mml:r<br>/transition metal dichalcogenide heterostructures. Physical Review B, 2021, 104, .</mml:r<br></mml:msub></mml:mrow></mml:math<br> | nn> <b>2</b> 2/mn | ո <b>l:m13</b> > |
| 39 | Microdynamic Study of Spin-Lattice Coupling Effects on Skyrmion Transport. Physical Review Letters, 2021, 127, 097201.                                                                                                                                                                          | 7.8               | 12               |
| 40 | Ab initio study on mechanical-bending-induced ferroelectric phase transition in ultrathin perovskite nanobelts. Acta Materialia, 2014, 76, 472-481.                                                                                                                                             | 7.9               | 11               |
| 41 | Structure-dependent electrical conductivity of protein: its differences between alpha-domain and beta-domain structures. Nanotechnology, 2015, 26, 125702.                                                                                                                                      | 2.6               | 11               |
| 42 | Crossover of polar and toroidal orders in ferroelectric nanodots with a morphotropic phase boundary and nonvolatile polar-vortex transformations. Physical Review B, 2019, 100, .                                                                                                               | 3.2               | 10               |
| 43 | Domain structures of ferroelectric thin film controlled by oxidizing atmosphere. Applied Physics<br>Letters, 2011, 99, 142908.                                                                                                                                                                  | 3.3               | 9                |
| 44 | Switchable diode effect in ferroelectric thin film: High dependence on poling process and temperature. AIP Advances, 2014, 4, .                                                                                                                                                                 | 1.3               | 9                |
| 45 | Nonvolatile ferroelectric field effect transistor based on a vanadium dioxide nanowire with large<br>on- and off-field resistance switching. Physical Chemistry Chemical Physics, 2020, 22, 4685-4691.                                                                                          | 2.8               | 9                |
| 46 | Giant magnetoresistance and tunneling electroresistance in multiferroic tunnel junctions with 2D ferroelectrics. Nanoscale, 2022, 14, 8849-8857.                                                                                                                                                | 5.6               | 9                |
| 47 | Strain Engineering the Ferroelectric Polarization and Optical Absorption in the<br>FEβ-In <sub>2</sub> Se <sub>3</sub> Monolayer. Journal of Physical Chemistry C, 2022, 126, 10181-10189.                                                                                                      | 3.1               | 9                |
| 48 | Bidirectional mechanical switching window in ferroelectric thin films predicted by<br>first-principle-based simulations. Npj Computational Materials, 2022, 8, .                                                                                                                                | 8.7               | 9                |
| 49 | Prediction of ferroelectric stability and magnetoelectric effect of asymmetric multiferroic tunnel junctions. Applied Physics Letters, 2013, 102, 152906.                                                                                                                                       | 3.3               | 8                |
| 50 | Charge carrier transition in an ambipolar single-molecule junction: Its mechanical-modulation and reversibility. Npj Computational Materials, 2016, 2, .                                                                                                                                        | 8.7               | 8                |
| 51 | Tip-force-induced ultrafast polarization switching in ferroelectric thin film: A dynamical phase field<br>simulation. Journal of Applied Physics, 2020, 128, .                                                                                                                                  | 2.5               | 8                |
| 52 | Exotic Quad-Domain Textures and Transport Characteristics of Self-Assembled BiFeO <sub>3</sub><br>Nanoislands on Nb-Doped SrTiO <sub>3</sub> . ACS Applied Materials & Interfaces, 2021, 13,<br>12331-12340.                                                                                    | 8.0               | 8                |
| 53 | Revisiting the switching characteristics and electroresistance effect in ferroelectric thin film towards an optimized hybrid switching strategy. Journal of Applied Physics, 2020, 128, .                                                                                                       | 2.5               | 7                |
| 54 | Flexoresponses of Synthetic Antiferromagnetic Systems Hosting Skyrmions. Physical Review Letters,<br>2022, 128, .                                                                                                                                                                               | 7.8               | 7                |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Morphology-controlled epitaxial vanadium dioxide low-dimensional structures: the delicate effects on the phase transition behaviors. Physical Chemistry Chemical Physics, 2018, 20, 14339-14347.                           | 2.8  | 6         |
| 56 | Atomistic simulations of spin-lattice coupling effects on magnetomechanics in skyrmion materials.<br>Physical Review B, 2019, 100, .                                                                                       | 3.2  | 6         |
| 57 | Molecular rotors with designed polar rotating groups possess mechanics-controllable wide-range rotational speed. Npj Computational Materials, 2020, 6, .                                                                   | 8.7  | 6         |
| 58 | Characterization and control of vortex and antivortex domain defects in quadrilateral ferroelectric nanodots. Physical Review Materials, 2019, 3, .                                                                        | 2.4  | 6         |
| 59 | The dynamic conductance response and mechanics-modulated memristive behavior of the Azurin monolayer under cyclic loads. Physical Chemistry Chemical Physics, 2017, 19, 6757-6767.                                         | 2.8  | 5         |
| 60 | Atomistic studies of temporal characteristics of polarization relaxation in ferroelectrics. Physical Review B, 2021, 103, .                                                                                                | 3.2  | 5         |
| 61 | Highly reliable bipolar resistive switching in sol-gel derived lanthanum-doped PbTiO3 thin film:<br>Coupling with ferroelectricity?. Acta Mechanica Sinica/Lixue Xuebao, 2014, 30, 526-532.                                | 3.4  | 4         |
| 62 | Length-dependent rectification and negative differential resistance in heterometallic n-alkanedithiol junctions. RSC Advances, 2015, 5, 13917-13922.                                                                       | 3.6  | 4         |
| 63 | Bipolar resistive switching and its temperature dependence in the composite structure of BiFeO3 bilayer. Applied Physics A: Materials Science and Processing, 2016, 122, 1.                                                | 2.3  | 4         |
| 64 | Phase field study on the effect of substrate elasticity on tip-force-induced domain switching in ferroelectric thin films. Journal of Applied Physics, 2021, 129, .                                                        | 2.5  | 4         |
| 65 | Phase field study on the performance of artificial synapse device based on the motion of domain wall<br>in ferroelectric thin films. Applied Physics Letters, 2021, 118, .                                                 | 3.3  | 4         |
| 66 | Investigating effects of nano-particles infiltration on mechanical properties of cell membrane using atomic force microscopy. Science China: Physics, Mechanics and Astronomy, 2012, 55, 989-995.                          | 5.1  | 3         |
| 67 | Large controllability of domain evolution in ferroelectric nanodot via isotropic surface charge screening. Applied Physics A: Materials Science and Processing, 2016, 122, 1.                                              | 2.3  | 3         |
| 68 | Stretchable ferroelectric nanoribbon and the mechanical stability of its domain structures. Applied<br>Physics Letters, 2018, 113, 062901.                                                                                 | 3.3  | 3         |
| 69 | Activating Basal Surface of Palladium by Electronic Modulation via Atomically Dispersed Nitrogen<br>Doping for High-Efficiency Hydrogen Evolution Reaction. Journal of Physical Chemistry Letters, 2021,<br>12, 7373-7378. | 4.6  | 3         |
| 70 | Donor–Acceptor Competition via Halide Vacancy Filling for Oxygen Detection of High Sensitivity and<br>Stability by Allâ€Inorganic Perovskite Films. Small, 2021, 17, 2102733.                                              | 10.0 | 3         |
| 71 | Shear-induced low-dimension electron transport in (LaMnO3)2/(SrMnO3)2 superlattice. Applied Physics A: Materials Science and Processing, 2012, 106, 119-124.                                                               | 2.3  | 2         |
| 72 | Misfit strain-temperature phase diagrams and domain stability of asymmetric ferroelectric capacitors:<br>Thermodynamic calculation and phase-field simulation. Journal of Applied Physics, 2014, 115, 094101.              | 2.5  | 2         |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Diverse polarization bi-stability in ferroelectric tunnel junctions due to the effects of the electrode and strain: an ab initio study. Physical Chemistry Chemical Physics, 2017, 19, 20147-20159.                                | 2.8  | 2         |
| 74 | Quaterrylene molecules on Ag(111): self-assembly behavior and voltage pulse induced trimer formation. Physical Chemistry Chemical Physics, 2018, 20, 12217-12222.                                                                  | 2.8  | 2         |
| 75 | A comprehensive picture in the view of atomic scale on piezoelectricity of ZnO tunnel junctions: The first principles simulation. AlP Advances, 2016, 6, 065217.                                                                   | 1.3  | 1         |
| 76 | Strong Polarity Asymmetry and Abnormal Mechanical Electroresistance Effect in the Organic<br>Monolayer Tunnel Junction. ACS Applied Electronic Materials, 2019, 1, 1084-1090.                                                      | 4.3  | 1         |
| 77 | Thermal stability of resistive switching effect in ZnO/BiFeO3 bilayer structure. AIP Advances, 2019, 9,<br>035121.                                                                                                                 | 1.3  | 1         |
| 78 | Skyrmion Transport Modified by Surface Terraces in Magnetic Multilayers. Physical Review Applied, 2021, 16, .                                                                                                                      | 3.8  | 1         |
| 79 | CH <sub>3</sub> NH <sub>3</sub> <sup>+</sup> and Pb Immobilization Through PbI <sub>2</sub> Binding<br>by Organic Molecule Doping for Homogeneous Organometal Halide Perovskite Films. Journal of<br>Materials Chemistry A, 0, , . | 10.3 | 1         |
| 80 | Organic Cation Diffusion-Induced Heterogeneous Viscoelasticity in Organic–Inorganic Hybrid<br>Perovskite Polycrystalline Films. ACS Applied Materials & Interfaces, 2022, 14, 22582-22592.                                         | 8.0  | 1         |
| 81 | Intriguing heterophase domain patterns in correlated electron material via tip force engineering. Acta<br>Materialia, 2022, 235, 118089.                                                                                           | 7.9  | 1         |
| 82 | Reliable resistive switching and its tunability in La-doped PbTiO3TiO2 composite bilayer. Functional<br>Materials Letters, 2015, 08, 1550033.                                                                                      | 1.2  | 0         |
| 83 | First-principle study of CO adsorption influence on the properties of ferroelectric tunnel junctions.<br>Physical Chemistry Chemical Physics, 2016, 18, 31115-31124.                                                               | 2.8  | 0         |
| 84 | The mechanics-modulated tunneling spectrum and low-pass effect of viscoelastic molecular monolayer. AIP Advances, 2017, 7, 105326.                                                                                                 | 1.3  | 0         |
| 85 | Tailoring nanoscale polarization patterns and transport properties in ferroelectric tunnel junctions by octahedral tilts in electrodes. RSC Advances, 2020, 10, 35367-35373.                                                       | 3.6  | 0         |
| 86 | Effect of Pre-Polarization Process on the Apparent Piezoelectric Response Measured by Point-Ring<br>Method in Ferroelectric Perovskite Oxide Ceramics. Energies, 2022, 15, 3627.                                                   | 3.1  | 0         |