
Richard D Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3431842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family. Pharmacological Reviews, 2009, 61, 119-161.	16.0	677
2	The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. British Journal of Pharmacology, 2015, 172, 6024-6109.	5.4	521
3	The Concise Guide to PHARMACOLOGY 2015/16: G proteinâ€coupled receptors. British Journal of Pharmacology, 2015, 172, 5744-5869.	5.4	507
4	Lipopolysaccharide Stimulates Platelet Secretion and Potentiates Platelet Aggregation via TLR4/MyD88 and the cGMP-Dependent Protein Kinase Pathway. Journal of Immunology, 2009, 182, 7997-8004.	0.8	311
5	Serum amyloid A induces IL-8 secretion through a G protein–coupled receptor, FPRL1/LXA4R. Blood, 2003, 101, 1572-1581.	1.4	307
6	Mutations in the cytoplasmic domain of the 275 kd mannose 6-phosphate receptor differentially alter lysosomal enzyme sorting and endocytosis. Cell, 1989, 57, 787-796.	28.9	287
7	Cutting Edge: TLR2 Is a Functional Receptor for Acute-Phase Serum Amyloid A. Journal of Immunology, 2008, 181, 22-26.	0.8	257
8	A Stimulatory Role for cGMP-Dependent Protein Kinase in Platelet Activation. Cell, 2003, 112, 77-86.	28.9	249
9	The N-formyl peptide receptor: A model for the study of chemoattractant receptor structure and function. , 1997, 74, 73-102.		239
10	ldentification of integrin αMβ2 as an adhesion receptor on peripheral blood monocytes for Cyr61 (CCN1) and connective tissue growth factor (CCN2): immediate-early gene products expressed in atherosclerotic lesions. Blood, 2002, 99, 4457-4465.	1.4	224
11	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	5.4	220
12	Emerging functions of serum amyloid A in inflammation. Journal of Leukocyte Biology, 2015, 98, 923-929.	3.3	218
13	Transcriptional mechanisms of acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L1037-L1050.	2.9	216
14	Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry, 1987, 26, 4350-4357.	2.5	210
15	The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nature Immunology, 2012, 13, 29-34.	14.5	195
16	The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules, 2017, 22, 455.	3.8	192
17	The Concise Guide to PHARMACOLOGY 2015/16: Transporters. British Journal of Pharmacology, 2015, 172, 6110-6202.	5.4	190
18	Microglial Aβ Receptors in Alzheimer's Disease. Cellular and Molecular Neurobiology, 2015, 35, 71-83.	3.3	189

#	Article	IF	CITATIONS
19	Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases. Nature Immunology, 2012, 13, 457-464.	14.5	181
20	The Concise Guide to PHARMACOLOGY 2015/16: Voltageâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5904-5941.	5.4	176
21	Characterization of a human cDNA that encodes a functional receptor for platelet activating factor. Biochemical and Biophysical Research Communications, 1991, 180, 105-111.	2.1	175
22	Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochemical and Biophysical Research Communications, 1992, 184, 582-589.	2.1	166
23	The Concise Guide to PHARMACOLOGY 2015/16: Catalytic receptors. British Journal of Pharmacology, 2015, 172, 5979-6023.	5.4	158
24	NF-κB-dependent fractalkine induction in rat aortic endothelial cells stimulated by IL-1β, TNF-α, and LPS. Journal of Leukocyte Biology, 2000, 67, 577-584.	3.3	157
25	Protein Kinase C-δ Regulates Thrombin-Induced ICAM-1 Gene Expression in Endothelial Cells via Activation of p38 Mitogen-Activated Protein Kinase. Molecular and Cellular Biology, 2001, 21, 5554-5565.	2.3	155
26	Role of G protein-coupled receptors in inflammation. Acta Pharmacologica Sinica, 2012, 33, 342-350.	6.1	153
27	Serum amyloid A1: Structure, function and gene polymorphism. Gene, 2016, 583, 48-57.	2.2	151
28	Identification of Peptides That Antagonize Formyl Peptide Receptor-Like 1-Mediated Signaling. Journal of Immunology, 2004, 173, 607-614.	0.8	150
29	Serum amyloid A induces G-CSF expression and neutrophilia via Toll-like receptor 2. Blood, 2009, 113, 429-437.	1.4	149
30	Emodin Enhances Arsenic Trioxide-Induced Apoptosis via Generation of Reactive Oxygen Species and Inhibition of Survival Signaling. Cancer Research, 2004, 64, 108-116.	0.9	148
31	Biological Consequences of Thrombin Receptor Deficiency in Mice. Thrombosis and Haemostasis, 1996, 76, 0860-0866.	3.4	145
32	Platelet-activating Factor Induces NF-κB Activation through a G Protein-coupled Pathway. Journal of Biological Chemistry, 1995, 270, 14928-14934.	3.4	138
33	Gαqand Gβγ Regulate PAR-1 Signaling of Thrombin-Induced NF-Î⁰B Activation and ICAM-1 Transcription in Endothelial Cells. Circulation Research, 2002, 91, 398-405.	4.5	138
34	Abrogation of thrombin-induced increase in pulmonary microvascular permeability in PAR-1 knockout mice. Physiological Genomics, 2000, 4, 137-145.	2.3	133
35	The Concise Guide to PHARMACOLOGY 2015/16: Ligandâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5870-5903.	5.4	133
36	Bradykinin stimulates NF-kappaB activation and interleukin 1beta gene expression in cultured human fibroblasts Journal of Clinical Investigation, 1996, 98, 2042-2049.	8.2	133

#	Article	IF	CITATIONS
37	Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. EMBO Journal, 2010, 29, 3952-3966.	7.8	129
38	Activation of NF-κB by Bradykinin through a Gαq- and Gβγ-dependent Pathway That Involves Phosphoinositide 3-Kinase and Akt. Journal of Biological Chemistry, 2000, 275, 24907-24914.	3.4	128
39	The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. British Journal of Pharmacology, 2015, 172, 5956-5978.	5.4	119
40	Broad immunocytochemical localization of the formylpeptide receptor in human organs, tissues, and cells. Cell and Tissue Research, 1998, 292, 129-135.	2.9	112
41	The Lysophospholipid Receptor G2A Activates a Specific Combination of G Proteins and Promotes Apoptosis. Journal of Biological Chemistry, 2003, 278, 14379-14386.	3.4	109
42	Akt isoforms differentially regulate neutrophil functions. Blood, 2010, 115, 4237-4246.	1.4	106
43	SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity. Cell Death and Disease, 2017, 8, e3158-e3158.	6.3	105
44	Constitutive Activation of NF-κB and Secretion of Interleukin-8 Induced by the G Protein-coupled Receptor of Kaposi's Sarcoma-associated Herpesvirus Involve Gα13 and RhoA. Journal of Biological Chemistry, 2001, 276, 45979-45987.	3.4	103
45	The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene, 2006, 25, 2234-2244.	5.9	103
46	Phosphorylation of the N-Formyl Peptide Receptor Carboxyl Terminus by the G Protein-coupled Receptor Kinase, GRK2. Journal of Biological Chemistry, 1995, 270, 1130-1137.	3.4	96
47	Nitric Oxide Activation of p38 Mitogen-activated Protein Kinase in 293T Fibroblasts Requires cGMP-dependent Protein Kinase. Journal of Biological Chemistry, 2000, 275, 2811-2816.	3.4	96
48	Structure and Function of Leukocyte Chemoattractant Receptors. Advances in Pharmacology, 1997, 39, 221-289.	2.0	93
49	Identification of Formyl Peptides from <i>Listeria monocytogenes</i> and <i>Staphylococcus aureus</i> as Potent Chemoattractants for Mouse Neutrophils. Journal of Immunology, 2008, 181, 1429-1437.	0.8	93
50	Serum amyloid A promotes <scp>LPS</scp> clearance and suppresses <scp>LPS</scp> â€induced inflammation and tissue injury. EMBO Reports, 2018, 19, .	4.5	93
51	Use of yeast artificial chromosome clones for mapping and walking within human chromosome segment 18q21.3 Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 7485-7489.	7.1	83
52	Serum Amyloid A Is an Endogenous Ligand That Differentially Induces IL-12 and IL-23. Journal of Immunology, 2006, 177, 4072-4079.	0.8	83
53	Lysophosphatidylcholine Modulates Neutrophil Oxidant Production through Elevation of Cyclic AMP. Journal of Immunology, 2005, 174, 2981-2989.	0.8	81
54	Ex Vivo and In Vitro Effect of Serum Amyloid A in the Induction of Macrophage M2 Markers and Efferocytosis of Apoptotic Neutrophils. Journal of Immunology, 2015, 194, 4891-4900.	0.8	79

#	Article	IF	CITATIONS
55	Neutrophil caveolin-1 expression contributes to mechanism of lung inflammation and injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L178-L186.	2.9	78
56	Amelioration of ulcerative colitis <i>via</i> inflammatory regulation by macrophage-biomimetic nanomedicine. Theranostics, 2020, 10, 10106-10119.	10.0	77
57	Differential Activation of Formyl Peptide Receptor-Like 1 by Peptide Ligands. Journal of Immunology, 2003, 171, 6807-6813.	0.8	76
58	Ca2+ Entry via TRPC Channels Is Necessary for Thrombin-induced NF-κB Activation in Endothelial Cells through AMP-activated Protein Kinase and Protein Kinase CĨ´. Journal of Biological Chemistry, 2009, 284, 563-574.	3.4	76
59	cDNA cloning of a novel G protein-coupled receptor with a large extracellular loop structure. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1996, 1305, 39-43.	2.4	75
60	Cyclic AMP-independent Activation of Protein Kinase A by Vasoactive Peptides. Journal of Biological Chemistry, 2001, 276, 20827-20830.	3.4	75
61	Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L208-L220.	2.9	75
62	Jmjd3-mediated epigenetic regulation of inflammatory cytokine gene expression in serum amyloid A-stimulated macrophages. Cellular Signalling, 2014, 26, 1783-1791.	3.6	74
63	Platelet-activating Factor Stimulates Transcription of the Heparin-binding Epidermal Growth Factor-like Growth Factor in Monocytes. Journal of Biological Chemistry, 1995, 270, 7787-7790.	3.4	73
64	The Synthetic Peptide Trp-Lys-Tyr-Met-Val-d-Met Is a Potent Chemotactic Agonist for Mouse Formyl Peptide Receptor. Journal of Immunology, 2000, 165, 4598-4605.	0.8	73
65	GSK3β is a checkpoint for TNF-α-mediated impaired osteogenic differentiation of mesenchymal stem cells in inflammatory microenvironments. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5119-5129.	2.4	73
66	Up-Regulation of Functional Kinin B1 Receptors in Allergic Airway Inflammation. Journal of Immunology, 2002, 169, 2054-2060.	0.8	71
67	A Novel Nonpeptide Ligand for Formyl Peptide Receptor-Like 1. Molecular Pharmacology, 2004, 66, 1213-1222.	2.3	71
68	Cell Type- and Developmental Stage-specific Activation of NF-κB by fMet-Leu-Phe in Myeloid Cells. Journal of Biological Chemistry, 1997, 272, 7995-8001.	3.4	63
69	Activation of p38 Mitogen-activated Protein Kinase by Lipopolysaccharide in Human Neutrophils Requires Nitric Oxide-dependent cGMP Accumulation. Journal of Biological Chemistry, 1999, 274, 537-542.	3.4	62
70	AKT2 Regulates Pulmonary Inflammation and Fibrosis via Modulating Macrophage Activation. Journal of Immunology, 2017, 198, 4470-4480.	0.8	62
71	Functional Characterization of Three Mouse Formyl Peptide Receptors. Molecular Pharmacology, 2013, 83, 389-398.	2.3	61
72	Phosphorylation of the N-Formyl Peptide Receptor Is Required for Receptor Internalization but Not Chemotaxis. Journal of Biological Chemistry, 1997, 272, 29426-29429.	3.4	60

#	Article	IF	CITATIONS
73	A CRISPRâ€Cpf1â€Assisted Nonâ€Homologous End Joining Genome Editing System of <i>Mycobacterium smegmatis</i> . Biotechnology Journal, 2018, 13, e1700588.	3.5	59
74	Structural basis of ligand binding modes at the human formyl peptide receptor 2. Nature Communications, 2020, 11, 1208.	12.8	58
75	Structural Determinants for the Interaction of Formyl Peptide Receptor 2 with Peptide Ligands. Journal of Biological Chemistry, 2014, 289, 2295-2306.	3.4	57
76	Role of the Second Extracellular Loop of Human C3a Receptor in Agonist Binding and Receptor Function. Journal of Biological Chemistry, 1999, 274, 9721-9728.	3.4	56
77	Serum amyloid A1 isoforms display different efficacy at Toll-like receptor 2 and formyl peptide receptor 2. Immunobiology, 2014, 219, 916-923.	1.9	55
78	Gα16Couples Chemoattractant Receptors to NF-κB Activation. Journal of Immunology, 2001, 166, 6885-6892.	0.8	54
79	Heterotrimeric G Protein Signaling Outside the Realm of Seven Transmembrane Domain Receptors. Molecular Pharmacology, 2010, 78, 12-18.	2.3	54
80	NF-κB Activation Is Required for C5a-Induced Interleukin-8 Gene Expression in Mononuclear Cells. Blood, 1999, 93, 3241-3249.	1.4	53
81	The Listeria monocytogenes ChiA Chitinase Enhances Virulence through Suppression of Host Innate Immunity. MBio, 2013, 4, e00617-12.	4.1	53
82	A Critical Role of Protein Kinase CδActivation Loop Phosphorylation in Formyl-Methionyl-Leucyl-Phenylalanine-Induced Phosphorylation of p47phox and Rapid Activation of Nicotinamide Adenine Dinucleotide Phosphate Oxidase. Journal of Immunology, 2007, 179, 7720-7728.	0.8	50
83	A non-redundant role for MKP5 in limiting ROS production and preventing LPS-induced vascular injury. EMBO Journal, 2009, 28, 2896-2907.	7.8	50
84	Autocrine regulation of interleukin-8 production in human monocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L1129-L1136.	2.9	49
85	Differential Signaling of Formyl Peptide Receptor-Like 1 by Trp-Lys-Tyr-Met-Val-Met-CONH ₂ or Lipoxin A4 in Human Neutrophils. Molecular Pharmacology, 2003, 64, 721-730.	2.3	49
86	Differential Roles of PKC-Î, in the Regulation of Intracellular Calcium Concentration in Primary T Cells. Journal of Molecular Biology, 2006, 355, 347-359.	4.2	49
87	6-Methyl-2,4-Disubstituted Pyridazin-3(<i>2H</i>)-ones: A Novel Class of Small-Molecule Agonists for Formyl Peptide Receptors. Journal of Medicinal Chemistry, 2009, 52, 5044-5057.	6.4	49
88	Protective Role of Reactive Oxygen Species in Endotoxin-Induced Lung Inflammation through Modulation of IL-10 Expression. Journal of Immunology, 2012, 188, 5734-5740.	0.8	49
89	Functional Analysis of Type 1α cGMP-dependent Protein Kinase Using Green Fluorescent Fusion Proteins. Journal of Biological Chemistry, 2001, 276, 13039-13048.	3.4	48
90	Differential Activation of Formyl Peptide Receptor Signaling by Peptide Ligands. Molecular Pharmacology, 2003, 64, 841-847.	2.3	48

#	Article	IF	CITATIONS
91	Identification of a Nuclear Localization Sequence in β-Arrestin-1 and Its Functional Implications. Journal of Biological Chemistry, 2012, 287, 8932-8943.	3.4	48
92	Identification of Tetratricopeptide Repeat 1 as an Adaptor Protein That Interacts with Heterotrimeric G Proteins and the Small GTPase Ras. Molecular and Cellular Biology, 2003, 23, 3847-3858.	2.3	47
93	β-Arrestin1 interacts with the G-protein subunits β1γ2 and promotes β1γ2-dependent Akt signalling for NF-κB activation. Biochemical Journal, 2009, 417, 287-296.	3.7	47
94	Map kinase phosphatase 5 protects against sepsis-induced acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L866-L874.	2.9	47
95	Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient. Journal of Experimental Medicine, 2015, 212, 267-280.	8.5	47
96	Transmembrane signalling by the N-formyl peptide receptor in stably transfected fibroblasts. Biochemical and Biophysical Research Communications, 1991, 179, 471-476.	2.1	46
97	A Critical Role for Phosphatidylinositol (3,4,5)-Trisphosphate–Dependent Rac Exchanger 1 in Endothelial Junction Disruption and Vascular Hyperpermeability. Circulation Research, 2012, 111, 1517-1527.	4.5	46
98	Identification of Novel Small-Molecule Agonists for Human Formyl Peptide Receptors and Pharmacophore Models of Their Recognition. Molecular Pharmacology, 2010, 77, 159-170.	2.3	45
99	Multiple Activation Steps of theN-Formyl Peptide Receptorâ€. Biochemistry, 1999, 38, 2240-2247.	2.5	44
100	Requirement of Gβγ and c-Src in D2 Dopamine Receptor-Mediated Nuclear Factor-κB Activation. Molecular Pharmacology, 2003, 64, 447-455.	2.3	44
101	Deficiency of macrophage migration inhibitory factor attenuates tau hyperphosphorylation in mouse models of Alzheimer's disease. Journal of Neuroinflammation, 2015, 12, 177.	7.2	44
102	Chemoattractant-stimulated NF-κB Activation Is Dependent on the Low Molecular Weight GTPase RhoA. Journal of Biological Chemistry, 2001, 276, 40977-40981.	3.4	43
103	The Chemerin Receptor CMKLR1 is a Functional Receptor for Amyloid-Î ² Peptide. Journal of Alzheimer's Disease, 2014, 43, 227-242.	2.6	43
104	Regulation of Leukocyte Degranulation by cGMP-Dependent Protein Kinase and Phosphoinositide 3-Kinase: Potential Roles in Phosphorylation of Target Membrane SNARE Complex Proteins in Rat Mast Cells. Journal of Immunology, 2007, 178, 416-427.	0.8	42
105	Binding of Low Affinity N-formyl Peptide Receptors to G Protein. Journal of Biological Chemistry, 1995, 270, 10686-10694.	3.4	41
106	Elevated Expression of Serum Amyloid A 3 Protects Colon Epithelium Against Acute Injury Through TLR2-Dependent Induction of Neutrophil IL-22 Expression in a Mouse Model of Colitis. Frontiers in Immunology, 2018, 9, 1503.	4.8	41
107	The Concise Guide to PHARMACOLOGY 2015/16: Other ion channels. British Journal of Pharmacology, 2015, 172, 5942-5955.	5.4	40
108	Fpr2 Deficiency Alleviates Diet-Induced Insulin Resistance Through Reducing Body Weight Gain and Inhibiting Inflammation Mediated by Macrophage Chemotaxis and M1 Polarization. Diabetes, 2019, 68, 1130-1142.	0.6	40

#	Article	IF	CITATIONS
109	Reconstitution of Chemotactic Peptide-Induced Nicotinamide Adenine Dinucleotide Phosphate (Reduced) Oxidase Activation in Transgenic COS-phox Cells. Journal of Immunology, 2004, 173, 7462-7470.	0.8	39
110	Predicting Mutational Effects on Receptor Binding of the Spike Protein of SARS-CoV-2 Variants. Journal of the American Chemical Society, 2021, 143, 17646-17654.	13.7	39
111	Human dendritic cells express functional formyl peptide receptor-like-2 (FPRL2) throughout maturation. Journal of Leukocyte Biology, 2002, 72, 598-607.	3.3	39
112	Characterization of two new members of the formyl peptide receptor gene family from 129S6 mice. Gene, 2002, 299, 57-63.	2.2	38
113	Pharmacological Characterization of a Novel Nonpeptide Antagonist for Formyl Peptide Receptor-Like 1. Molecular Pharmacology, 2007, 72, 976-983.	2.3	37
114	Bioluminescent detection of peroxynitrite with a boronic acid-caged luciferin. Free Radical Biology and Medicine, 2013, 61, 40-50.	2.9	37
115	Identification of functional domains in the formyl peptide receptor-like 1 for agonist-induced cell chemotaxis. FEBS Journal, 2005, 272, 769-778.	4.7	36
116	Serum amyloid A induces interleukinâ€33 expression through an IRF7â€dependent pathway. European Journal of Immunology, 2014, 44, 2153-2164.	2.9	36
117	In vitro immunomodulatory effects of human milk oligosaccharides on murine macrophage RAW264.7 cells. Carbohydrate Polymers, 2019, 207, 230-238.	10.2	36
118	Suppression of LPS-induced tau hyperphosphorylation by serum amyloid A. Journal of Neuroinflammation, 2016, 13, 28.	7.2	35
119	Characterization of Quin-C1 for its anti-inflammatory property in a mouse model of bleomycin-induced lung injury. Acta Pharmacologica Sinica, 2011, 32, 601-610.	6.1	34
120	The Expression of Formyl Peptide Receptor 1 is Correlated with Tumor Invasion of Human Colorectal Cancer. Scientific Reports, 2017, 7, 5918.	3.3	34
121	Cloning and functional characterization of the mouse C3a anaphylatoxin receptor gene. Immunogenetics, 1997, 47, 64-72.	2.4	33
122	The Immunosuppressant Cyclosporin A Antagonizes Human Formyl Peptide Receptor through Inhibition of Cognate Ligand Binding. Journal of Immunology, 2006, 177, 7050-7058.	0.8	33
123	The Akt1 Isoform Is Required for Optimal IFN-β Transcription through Direct Phosphorylation of β-Catenin. Journal of Immunology, 2012, 189, 3104-3111.	0.8	33
124	Dual modulation of formyl peptide receptor 2 by aspirinâ€triggered lipoxin contributes to its antiâ€inflammatory activity. FASEB Journal, 2020, 34, 6920-6933.	0.5	33
125	TGFβ2-mediated epithelial–mesenchymal transition and NF-κB pathway activation contribute to osimertinib resistance. Acta Pharmacologica Sinica, 2021, 42, 451-459.	6.1	33
126	Duplex highâ€ŧhroughput flow cytometry screen identifies two novel formylpeptide receptor family probes. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 253-263.	1.5	32

#	Article	IF	CITATIONS
127	Identification of anN-Formyl Peptide Receptor Ligand Binding Domain by a Gain-of-Function Approach. Biochemical and Biophysical Research Communications, 1997, 238, 377-381.	2.1	30
128	β-Adrenergic agonists regulate NF-κB activation through multiple mechanisms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L615-L617.	2.9	30
129	High-throughput flow cytometry for drug discovery. Expert Opinion on Drug Discovery, 2007, 2, 685-696.	5.0	30
130	High-Content Screening: Flow Cytometry Analysis. Methods in Molecular Biology, 2009, 486, 151-165.	0.9	30
131	Activation of the small GTPase Rac1 by cGMP-dependent protein kinase. Cellular Signalling, 2004, 16, 1061-1069.	3.6	30
132	Opposing Effects of Platelet-Activating Factor and Lyso-Platelet-Activating Factor on Neutrophil and Platelet Activation. Molecular Pharmacology, 2009, 75, 227-234.	2.3	29
133	Differential Roles of the NPXXY Motif in Formyl Peptide Receptor Signaling. Journal of Immunology, 2001, 166, 4099-4105.	0.8	28
134	Characterization of a Mutation in the Phox Homology Domain of the NADPH Oxidase Component p40phox Identifies A Mechanism for Negative Regulation of Superoxide Production. Journal of Biological Chemistry, 2007, 282, 30273-30284.	3.4	28
135	A Role for MK2 in Enhancing Neutrophil-Derived ROS Production and Aggravating Liver Ischemia/Reperfusion Injury. Frontiers in Immunology, 2018, 9, 2610.	4.8	28
136	Pivotal Role of Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 in Inflammatory Pulmonary Diseases. Current Protein and Peptide Science, 2016, 17, 332-342.	1.4	28
137	Activation of cGMP-dependent Protein Kinase by Protein Kinase C. Journal of Biological Chemistry, 2003, 278, 16706-16712.	3.4	27
138	Identification of Novel Formyl Peptide Receptor-Like 1 Agonists That Induce Macrophage Tumor Necrosis Factor α Production. Molecular Pharmacology, 2008, 74, 392-402.	2.3	27
139	Nedd8 modification of Cullin-5 regulates lipopolysaccharide-induced acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L104-L114.	2.9	26
140	MK2 mediates macrophage activation and acute lung injury by regulating <i>let-7e</i> miRNA. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L371-L381.	2.9	26
141	Activation of the Mitogen-activated Protein Kinase Pathway by fMet-Leu-Phe in the Absence of Lyn and Tyrosine Phosphorylation of SHC in Transfected Cells. Journal of Biological Chemistry, 1996, 271, 13244-13249.	3.4	25
142	Suppression of Lipopolysaccharide-Induced Inflammatory Response by Fragments from Serum Amyloid A. Journal of Immunology, 2017, 199, 1105-1112.	0.8	25
143	FAM19A1 is a new ligand for GPR1 that modulates neural stemâ€cell proliferation and differentiation. FASEB Journal, 2018, 32, 5874-5890.	0.5	25
144	Role for the Guanine Nucleotide Exchange Factor Phosphatidylinositol-3,4,5-Trisphosphate–Dependent Rac Exchanger 1 in Platelet Secretion and Aggregation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 768-777.	2.4	24

#	Article	IF	CITATIONS
145	Antagonism of human formyl peptide receptor 1 (FPR1) by chromones and related isoflavones. Biochemical Pharmacology, 2014, 92, 627-641.	4.4	24
146	LIM Kinase 1 Promotes Endothelial Barrier Disruption and Neutrophil Infiltration in Mouse Lungs. Circulation Research, 2009, 105, 549-556.	4.5	23
147	Serum Amyloid A Differentially Activates Microglia and Astrocytes via the PI3K Pathway. Journal of Alzheimer's Disease, 2013, 38, 133-144.	2.6	23
148	4-Aroyl-3-hydroxy-5-phenyl-1H-pyrrol-2(5H)-ones as N-formyl peptide receptor 1 (FPR1) antagonists. Biochemical Pharmacology, 2017, 142, 120-132.	4.4	23
149	Nano-carriers for delivery and targeting of active ingredients of Chinese medicine for hepatocellular carcinoma therapy. Materials Today, 2019, 25, 66-87.	14.2	22
150	Stereospecific Induction of Nuclear Factor-κB Activation by Isochamaejasmin. Molecular Pharmacology, 2005, 68, 1534-1542.	2.3	21
151	Chemerin C9 peptide induces receptor internalization through a clathrin-independent pathway. Acta Pharmacologica Sinica, 2014, 35, 653-663.	6.1	21
152	Cutting Edge: A Cullin-5–TRAF6 Interaction Promotes TRAF6 Polyubiquitination and Lipopolysaccharide Signaling. Journal of Immunology, 2016, 197, 21-26.	0.8	21
153	4'-Hydroxywogonin suppresses lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and acute lung injury mice. PLoS ONE, 2017, 12, e0181191.	2.5	21
154	Identification of ligand effector binding sites in transmembrane regions of the human G protein oupled C3a receptor. Protein Science, 1999, 8, 2304-2311.	7.6	20
155	Characterization of P-Rex1 for its role in fMet-Leu-Phe-induced superoxide production in reconstituted COSphox cells. Cellular Signalling, 2010, 22, 770-782.	3.6	20
156	Shikonin Derivative <scp>DMAKO</scp> â€05 Inhibits Akt Signal Activation and Melanoma Proliferation. Chemical Biology and Drug Design, 2016, 87, 895-904.	3.2	20
157	2-Arylacetamido-4-phenylamino-5-substituted pyridazinones as formyl peptide receptors agonists. Bioorganic and Medicinal Chemistry, 2016, 24, 2530-2543.	3.0	20
158	Anti-inflammatory signaling through G protein-coupled receptors. Acta Pharmacologica Sinica, 2020, 41, 1531-1538.	6.1	20
159	Reconstitution of recombinant N -formyl chemotactic peptide receptor with G protein. Journal of Leukocyte Biology, 1993, 53, 470-474.	3.3	19
160	A Rho Exchange Factor Mediates fMet-Leu-Phe-induced NF-κB Activation in Human Peripheral Blood Monocytes. Journal of Biological Chemistry, 2004, 279, 7208-7212.	3.4	18
161	Identification of P-Rex1 as an anti-inflammatory and anti-fibrogenic target for pulmonary fibrosis. Scientific Reports, 2016, 6, 25785.	3.3	18
162	Licocoumarone isolated from Glycyrrhiza uralensis selectively alters LPS-induced inflammatory responses in RAW 264.7 macrophages. European Journal of Pharmacology, 2017, 801, 46-53.	3.5	18

#	Article	IF	CITATIONS
163	Biased allosteric modulation of formyl peptide receptor 2 leads to distinct receptor conformational states for pro- and anti-inflammatory signaling. Pharmacological Research, 2020, 161, 105117.	7.1	18
164	Effect of platelet-activating factor receptor expression on CHO cell motility. Journal of Cellular Physiology, 2000, 183, 254-264.	4.1	17
165	PML/RARα fusion protein mediates the unique sensitivity to arsenic cytotoxicity in acute promyelocytic leukemia cells: Mechanisms involve the impairment of cAMP signaling and the aberrant regulation of NADPH oxidase. Journal of Cellular Physiology, 2008, 217, 486-493.	4.1	17
166	Formyl Peptide Receptor 2 Deficiency Improves Cognition and Attenuates Tau Hyperphosphorylation and Astrogliosis in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 67, 169-179.	2.6	17
167	Cα16 activates Ras by forming a complex with tetratricopeptide repeat 1 (TPR1) and Son of Sevenless (SOS). Cellular Signalling, 2010, 22, 1448-1458.	3.6	16
168	MLN4924 protects against interleukin-17A-induced pulmonary inflammation by disrupting ACT1-mediated signaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L1070-L1080.	2.9	16
169	Serum amyloid A3 confers protection against acute lung injury in <i>Pseudomonas aeruginosa</i> -infected mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L314-L322.	2.9	16
170	Isolation and characterization of a new chemokine receptor gene, the putative chicken CXCR1. Gene, 2000, 257, 307-317.	2.2	15
171	Protein Kinase C δ (PKCÎ) Attenuates Bleomycin Induced Pulmonary Fibrosis via Inhibiting NF-κB Signaling Pathway. Frontiers in Physiology, 2020, 11, 367.	2.8	15
172	Strategies for Positioning Fluorescent Probes and Crosslinkers on Formyl Peptide Ligands. Journal of Receptor and Signal Transduction Research, 1998, 18, 187-221.	2.5	14
173	Exploring the Activation Process of the β2AR-G _s Complex. Journal of the American Chemical Society, 2021, 143, 11044-11051.	13.7	14
174	Discovery of Trp-Nle-Tyr-Met as a novel agonist for human formyl peptide receptor-like 1. Biochemical Pharmacology, 2007, 74, 317-326.	4.4	13
175	Activation of rasâ€dependent signaling pathways by G ₁₄ â€coupled receptors requires the adaptor protein TPR1. Journal of Cellular Biochemistry, 2012, 113, 3486-3497.	2.6	13
176	Hydroxycinnamic acid amides from Scopolia tangutica inhibit the activity of M1 muscarinic acetylcholine receptor in vitro. Fìtoterapìâ, 2016, 108, 9-12.	2.2	13
177	Identification of Alkaloids from Corydalis yanhusuo W. T. Wang as Dopamine D1 Receptor Antagonists by Using CRE-Luciferase Reporter Gene Assay. Molecules, 2018, 23, 2585.	3.8	13
178	Novel chemoattractant peptides for human leukocytes. Biochemical Pharmacology, 2003, 66, 1841-1851.	4.4	12
179	V101L of human formyl peptide receptor 1 (FPR1) increases receptor affinity and augments the antagonism mediated by cyclosporins. Biochemical Journal, 2013, 451, 245-255.	3.7	12
180	An Exploration of Traditional Chinese Medicinal Plants with Anti-Inflammatory Activities. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-10.	1.2	12

#	Article	IF	CITATIONS
181	Cryo-EM structure of activated bile acids receptor TGR5 in complex with stimulatory G protein. Signal Transduction and Targeted Therapy, 2020, 5, 142.	17.1	12
182	The Chemokine-like Receptor 1 Deficiency Improves Cognitive Deficits of AD Mice and Attenuates Tau Hyperphosphorylation via Regulating Tau Seeding. Journal of Neuroscience, 2020, 40, 6991-7007.	3.6	12
183	Pharmacological insights into autophagy modulation in autoimmune diseases. Acta Pharmaceutica Sinica B, 2021, 11, 3364-3378.	12.0	12
184	Stimulation of NF-κB Activation and Gene Expression by Platelet-Activating Factor. Advances in Experimental Medicine and Biology, 1996, 416, 143-151.	1.6	12
185	A novel fluorescent crossâ€reactive formylpeptide receptor/formylpeptide receptorâ€like 1 hexapeptide ligand. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 264-270.	1.5	11
186	Selenium-mediated protection in reversing the sensitivity of bacterium to the bactericidal antibiotics. Journal of Trace Elements in Medicine and Biology, 2017, 41, 23-31.	3.0	11
187	p47phox deficiency improves cognitive impairment and attenuates tau hyperphosphorylation in mouse models of AD. Alzheimer's Research and Therapy, 2020, 12, 146.	6.2	10
188	Leukocyte inflammatory mediators and lung pathophysiology: an update. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L461-L462.	2.9	9
189	Activation State-Dependent Interaction between Cαi and p67 phox. Molecular and Cellular Biology, 2006, 26, 5190-5200.	2.3	9
190	Synthesis of Five―and Sixâ€Membered <i>N</i> â€Phenylacetamido Substituted Heterocycles as Formyl Peptide Receptor Agonists. Drug Development Research, 2017, 78, 49-62.	2.9	9
191	Design, Synthesis and Characterization of fMLFâ€Mimicking AApeptides. ChemBioChem, 2014, 15, 2420-2426.	2.6	8
192	New erythromycin derivatives enhance <i>β</i> -lactam antibiotics against methicillin-resistant <i>Staphylococcus aureus</i> . Letters in Applied Microbiology, 2015, 60, 352-358.	2.2	8
193	Targeted Delivery of a Ligand–Drug Conjugate via Formyl Peptide Receptor 1 through Cholesterol-Dependent Endocytosis. Molecular Pharmaceutics, 2019, 16, 2636-2647.	4.6	8
194	Impaired p47phox phosphorylation in neutrophils from patients with p67phox-deficient chronic granulomatous disease. Blood, 2022, 139, 2512-2522.	1.4	7
195	Normal Cell Surface Expression and Selective Loss of Functions Resulting from Phe110 to Ser and Cys126 to Trp Substitutions in the Formyl Peptide Receptor. Immunological Investigations, 2004, 33, 193-212.	2.0	6
196	Gα16 interacts with tetratricopeptide repeat 1 (TPR1) through its β3 region to activate Ras independently of phospholipase Cβ signaling. BMC Structural Biology, 2011, 11, 17.	2.3	6
197	New biphenantherene and nervogenic acid derivatives from Liparis regnieri Finet and their inhibitory activities against NF-κB activation. Tetrahedron, 2017, 73, 1611-1617.	1.9	6
198	Editorial: Biased agonism in chemoattractant receptor signaling. Journal of Leukocyte Biology, 2010, 87, 959-961.	3.3	5

#	Article	IF	CITATIONS
199	The Rho guanine nucleotide exchange factor P-Rex1 as a potential drug target for cancer metastasis and inflammatory diseases. Pharmacological Research, 2020, 153, 104676.	7.1	5
200	A Ganoderma-Derived Compound Exerts Inhibitory Effect Through Formyl Peptide Receptor 2. Frontiers in Pharmacology, 2020, 11, 337.	3.5	5
201	A novel bioengineered fragment peptide of Vasostatin-1 exerts smooth muscle pharmacological activities and anti-angiogenic effects via blocking VEGFR signalling pathway. Computational and Structural Biotechnology Journal, 2021, 19, 2664-2675.	4.1	5
202	Detection of Intact Transcription Factors in Human Neutrophils. Methods in Molecular Biology, 2007, 412, 473-486.	0.9	4
203	Structural and conformational studies of biased agonism through formyl peptide receptors. American Journal of Physiology - Cell Physiology, 2022, 322, C939-C947.	4.6	4
204	A Preparation of λ Phage DNA Based on Affinity Chromatography. Analytical Biochemistry, 1993, 209, 199-201.	2.4	3
205	Pharmacology in China: a brief overview. Trends in Pharmacological Sciences, 2013, 34, 532-533.	8.7	3
206	Serum Amyloid A and Immunomodulation. , 2019, , .		2
207	Cell type-specific release of matrix-metallo-proteinase-9 by bacterial chemoattractant in human blood phagocytic leukocytes. International Journal of Clinical and Experimental Medicine, 2011, 4, 67-73.	1.3	2
208	January 2000!. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L1-L2.	2.9	1
209	Structural determinants for the interaction of formyl peptide receptor 2 with peptide ligands Journal of Biological Chemistry, 2014, 289, 4814.	3.4	1
210	The Kinesin Light Chain–Related Protein PAT1 Promotes Superoxide Anion Production in Human Phagocytes. Journal of Immunology, 2019, 202, 1549-1558.	0.8	1
211	Formyl Peptide Receptor. , 2018, , 1837-1843.		1
212	FPR2/ALX. The AFCS-nature Molecule Pages, 0, , .	0.2	1
213	STIM1 for stimulation of phagocyte NADPH oxidase. Blood, 2014, 123, 2129-2130.	1.4	0
214	The Acute-Phase Protein Serum Amyloid A Induces G-CSF Expression Blood, 2006, 108, 3855-3855.	1.4	0
215	FPR3. The AFCS-nature Molecule Pages, 0, , .	0.2	0
216	FPR1. The AFCS-nature Molecule Pages, 0, , .	0.2	0

#	Article	IF	CITATIONS
217	Serum Amyloid A Induces G-CSF Expression and Granulocytosis Via Toll-Like Receptor 2 Blood, 2007, 110, 3305-3305.	1.4	0
218	Identification of formyl peptides from S. aureus and L. monocytogenes as highly potent chemoattractants for mouse neutrophils. FASEB Journal, 2008, 22, 666.8.	0.5	0
219	Genetic Evidence for PKCÎ′ Signaling in Thrombinâ€Induced NFâ€ÎºB Activation in Endothelial Cells. FASEB Journal, 2010, 24, 833.22.	0.5	0
220	Pâ€Rex1 regulates lung microvascular permeability. FASEB Journal, 2010, 24, lb554.	0.5	0
221	Pâ€Rex1 is critical for vascular hyperâ€permeability and edema in the lungs. FASEB Journal, 2012, 26, 842.10.	0.5	0
222	Role of nNOS in the progression of systemic inflammatory response induced by lipopolysaccharide. FASEB Journal, 2012, 26, lb546.	0.5	0
223	Detection of Intact Transcription Factors in Human Neutrophils. Methods in Molecular Biology, 2014, 1124, 485-498.	0.9	0
224	Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient. Journal of Cell Biology, 2015, 208, 2083OIA12.	5.2	0
225	Detection of Intact Transcription Factors in Human Neutrophils. Methods in Molecular Biology, 2020, 2087, 261-275.	0.9	0
226	Biased allosteric modulation of G protein oupled chemoattractant receptor FPR2. FASEB Journal, 2020, 34, 1-1.	0.5	0