Youling L Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3431812/publications.pdf Version: 2024-02-01

210 papers	13,559 citations	16437 64 h-index	28275 105 g-index
212	212	212	7666
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural and Emulsifying Properties of Soy Protein Isolate Subjected to Acid and Alkaline pH-Shifting Processes. Journal of Agricultural and Food Chemistry, 2009, 57, 7576-7583.	2.4	374
2	Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science and Technology, 2020, 102, 51-61.	7.8	368
3	Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein. Food Chemistry, 2015, 180, 235-243.	4.2	362
4	Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Science, 2016, 120, 107-117.	2.7	344
5	Antioxidant Activity of Zein Hydrolysates in a Liposome System and the Possible Mode of Action. Journal of Agricultural and Food Chemistry, 2006, 54, 6059-6068.	2.4	323
6	Reducing, Radical Scavenging, and Chelation Properties of in Vitro Digests of Alcalase-Treated Zein Hydrolysate. Journal of Agricultural and Food Chemistry, 2008, 56, 2714-2721.	2.4	302
7	Inhibition of Lipid Oxidation in Cooked Beef Patties by Hydrolyzed Potato Protein Is Related to Its Reducing and Radical Scavenging Abilityâ€. Journal of Agricultural and Food Chemistry, 2005, 53, 9186-9192.	2.4	245
8	Antioxidant activity of peptide fractions from whey protein hydrolysates as measured by electron spin resonance. Food Chemistry, 2009, 113, 196-201.	4.2	214
9	Concentration effects of hydroxyl radical oxidizing systems on biochemical properties of porcine muscle myofibrillar protein. Food Chemistry, 2007, 101, 1239-1246.	4.2	210
10	Rheological and Microstructural Properties of Porcine Myofibrillar Protein–Lipid Emulsion Composite Gels. Journal of Food Science, 2009, 74, E207-17.	1.5	210
11	Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Science, 2003, 64, 259-263.	2.7	201
12	pH Shifting Alters Solubility Characteristics and Thermal Stability of Soy Protein Isolate and Its Globulin Fractions in Different pH, Salt Concentration, and Temperature Conditions. Journal of Agricultural and Food Chemistry, 2010, 58, 8035-8042.	2.4	195
13	Fractionation and characterisation for antioxidant activity of hydrolysed whey protein. Journal of the Science of Food and Agriculture, 2004, 84, 1908-1918.	1.7	188
14	Peptide Fractionation and Free Radical Scavenging Activity of Zein Hydrolysate. Journal of Agricultural and Food Chemistry, 2010, 58, 587-593.	2.4	182
15	Variation in the Cross-Linking Pattern of Porcine Myofibrillar Protein Exposed to Three Oxidative Environments. Journal of Agricultural and Food Chemistry, 2009, 57, 153-159.	2.4	168
16	Electrophoretic Pattern, Thermal Denaturation, and in Vitro Digestibility of Oxidized Myosinâ€. Journal of Agricultural and Food Chemistry, 2000, 48, 624-630.	2.4	159
17	Hydroxyl Radical and Ferrylâ€Generating Systems Promote Gel Network Formation of Myofibrillar Protein. Journal of Food Science, 2010, 75, C215-21.	1.5	159
18	Biochemical Changes in Myofibrillar Protein Isolates Exposed to Three Oxidizing Systems. Journal of Agricultural and Food Chemistry, 2006, 54, 4445-4451.	2.4	155

#	Article	IF	CITATIONS
19	Dual Role (Anti- and Pro-oxidant) of Gallic Acid in Mediating Myofibrillar Protein Gelation and Gel in Vitro Digestion. Journal of Agricultural and Food Chemistry, 2016, 64, 3054-3061.	2.4	148
20	Myofibrillar protein from different muscle fiber types: Implications of biochemical and functional properties in meat processingâ^—. Critical Reviews in Food Science and Nutrition, 1994, 34, 293-320.	5.4	147
21	Antimicrobial activities of spice extracts against pathogenic and spoilage bacteria in modified atmosphere packaged fresh pork and vacuum packaged ham slices stored at 4°C. Meat Science, 2009, 81, 686-692.	2.7	144
22	Processing, Nutrition, and Functionality of Hempseed Protein: A Review. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 936-952.	5.9	143
23	Antioxidant and emulsifying properties of potato protein hydrolysate in soybean oil-in-water emulsions. Food Chemistry, 2010, 120, 101-108.	4.2	141
24	Emulsifying and foaming properties of transglutaminase-treated wheat gluten hydrolysate as influenced by pH, temperature and salt. Food Hydrocolloids, 2009, 23, 72-81.	5.6	139
25	Extreme pH treatments enhance the structure-reinforcement role of soy protein isolate and its emulsions in pork myofibrillar protein gels in the presence of microbial transglutaminase. Meat Science, 2013, 93, 469-476.	2.7	138
26	Interaction of Whey Proteins with Phenolic Derivatives Under Neutral and Acidic pH Conditions. Journal of Food Science, 2017, 82, 409-419.	1.5	136
27	Chemical, physical, and functional properties of oxidized turkey white muscle myofibrillar proteins. Journal of Agricultural and Food Chemistry, 1993, 41, 186-189.	2.4	135
28	Interfacial Structural Role of pH-Shifting Processed Pea Protein in the Oxidative Stability of Oil/Water Emulsions. Journal of Agricultural and Food Chemistry, 2014, 62, 1683-1691.	2.4	134
29	Inhibition of Protein and Lipid Oxidation in Beef Heart Surimi-like Material by Antioxidants and Combinations of pH, NaCl, and Buffer Type in the Washing Mediaâ€. Journal of Agricultural and Food Chemistry, 1996, 44, 119-125.	2.4	129
30	Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/soy protein mixtures*1. Meat Science, 2003, 65, 899-907.	2.7	127
31	Decreased gelling and emulsifying properties of myofibrillar protein from repeatedly frozen-thawed porcine longissimus muscle are due to protein denaturation and susceptibility to aggregation. Meat Science, 2010, 85, 481-486.	2.7	126
32	Oxidation-Induced Unfolding Facilitates Myosin Cross-Linking in Myofibrillar Protein by Microbial Transglutaminase. Journal of Agricultural and Food Chemistry, 2012, 60, 8020-8027.	2.4	126
33	Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel: Effect of salt level and transglutaminase incubation. Meat Science, 2009, 81, 565-572.	2.7	117
34	A pH shift approach to the improvement of interfacial properties of plant seed proteins. Current Opinion in Food Science, 2018, 19, 50-56.	4.1	114
35	Dietary antioxidant supplementation enhances lipid and protein oxidative stability of chicken broiler meat through promotion of antioxidant enzyme activity. Poultry Science, 2014, 93, 1561-1570.	1.5	113
36	Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein. Food Chemistry, 2010, 118, 582-588.	4.2	112

#	Article	IF	CITATIONS
37	Heating-Aided pH Shifting Modifies Hemp Seed Protein Structure, Cross-Linking, and Emulsifying Properties. Journal of Agricultural and Food Chemistry, 2018, 66, 10827-10834.	2.4	108
38	Role of myofibrillar proteins in water-binding in brine-enhanced meats. Food Research International, 2005, 38, 281-287.	2.9	103
39	Protein Oxidation Enhances Hydration but Suppresses Water-Holding Capacity in Porcine Longissimus Muscle. Journal of Agricultural and Food Chemistry, 2010, 58, 10697-10704.	2.4	101
40	Antioxidant activity of spice extracts in a liposome system and in cooked pork patties and the possible mode of action. Meat Science, 2010, 85, 772-778.	2.7	100
41	Biochemical Susceptibility of Myosin in Chicken Myofibrils Subjected to Hydroxyl Radical Oxidizing Systems. Journal of Agricultural and Food Chemistry, 2004, 52, 4303-4307.	2.4	99
42	Production of cured meat color in nitrite-free Harbin red sausage by Lactobacillus fermentum fermentation. Meat Science, 2007, 77, 593-598.	2.7	97
43	Thermal Aggregation of β-Lactoglobulin: Effect of pH, Ionic Environment, and Thiol Reagent. Journal of Dairy Science, 1993, 76, 70-77.	1.4	96
44	Intake of Oxidized Proteins and Amino Acids and Causative Oxidative Stress and Disease: Recent Scientific Evidences and Hypotheses. Journal of Food Science, 2019, 84, 387-396.	1.5	96
45	Interfacial properties of whey protein foams as influenced by preheating and phenolic binding at neutral pH. Food Hydrocolloids, 2018, 82, 379-387.	5.6	93
46	Myofibrillar Protein Gelation: Viscoelastic Changes Related to Heating Procedures. Journal of Food Science, 1994, 59, 734-738.	1.5	85
47	Surface Properties of Heatâ€Induced Soluble Soy Protein Aggregates of Different Molecular Masses. Journal of Food Science, 2015, 80, C279-87.	1.5	85
48	Role of disulphide linkages between protein-coated lipid droplets and the protein matrix in the rheological properties of porcine myofibrillar protein–peanut oil emulsion composite gels. Meat Science, 2011, 88, 384-390.	2.7	83
49	Inhibition of Lipid Oxidation in Oil-in-Water Emulsions by Interface-Adsorbed Myofibrillar Protein. Journal of Agricultural and Food Chemistry, 2015, 63, 8896-8904.	2.4	83
50	Role of βâ€Conglycinin and Glycinin Subunits in the pHâ€Shiftingâ€Induced Structural and Physicochemical Changes of Soy Protein Isolate. Journal of Food Science, 2011, 76, C293-302.	1.5	82
51	A COMPARISON OF THE RHEOLOGICAL CHARACTERISTICS OF DIFFERENT FRACTIONS OF CHICKEN MYOFIBRILLAR PROTEINS. Journal of Food Biochemistry, 1992, 16, 217-227.	1.2	81
52	Effects of (â^')-epigallocatechin-3-gallate incorporation on the physicochemical and oxidative stability of myofibrillar protein–soybean oil emulsions. Food Chemistry, 2018, 245, 439-445.	4.2	81
53	Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO 2 nanoparticles. Carbohydrate Polymers, 2016, 138, 59-65.	5.1	80
54	Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods. Critical Reviews in Food Science and Nutrition, 2018, 58, 2981-3003.	5.4	80

4

#	Article	IF	CITATIONS
55	Animal and Plant Protein Oxidation: Chemical and Functional Property Significance. Foods, 2021, 10, 40.	1.9	79
56	Physicochemical Changes in Prawns (Machrobrachium rosenbergii) Subjected to Multiple Freeze-Thaw Cycles. Journal of Food Science, 1997, 62, 123-127.	1.5	78
57	High pressure homogenization combined with pH shift treatment: A process to produce physically and oxidatively stable hemp milk. Food Research International, 2018, 106, 487-494.	2.9	78
58	Oxidative modification of amino acids in porcine myofibrillar protein isolates exposed to three oxidizing systems. Food Chemistry, 2007, 103, 607-616.	4.2	77
59	Interfacial dilatational and emulsifying properties of ultrasound-treated pea protein. Food Chemistry, 2021, 350, 129271.	4.2	76
60	Effects of sodium pyrophosphate coupled with catechin on the oxidative stability and gelling properties of myofibrillar protein. Food Hydrocolloids, 2020, 104, 105722.	5.6	74
61	Characteristics and functional properties of buckwheat protein–sugar Schiff base complexes. LWT - Food Science and Technology, 2013, 51, 397-404.	2.5	71
62	Two efficient nitrite-reducing Lactobacillus strains isolated from traditional fermented pork (Nanx) Tj ETQq0 0 0 302-309.	rgBT /Ove 2.7	erlock 10 Tf 50 69
63	Antioxidant and Bile Acid Binding Activity of Buckwheat Protein in Vitro Digests. Journal of Agricultural and Food Chemistry, 2009, 57, 4372-4380.	2.4	68
64	Emulsified Milkfat Effects on Rheology of Acid-Induced Milk Gels. Journal of Food Science, 1991, 56, 920-925.	1.5	67
65	Influence of storage temperature and duration on lipid and protein oxidation and flavour changes in frozen pork dumpling filler. Meat Science, 2013, 95, 295-301.	2.7	66
66	Effect of dietary ractopamine on tenderness and postmortem protein degradation of pork muscle. Meat Science, 2006, 73, 600-604.	2.7	65
67	Changes in Structural Characteristics of Antioxidative Soy Protein Hydrolysates Resulting from Scavenging of Hydroxyl Radicals. Journal of Food Science, 2013, 78, C152-9.	1.5	65
68	Reduction of the fat content of battered and breaded fish balls during deep-fat frying using fermented bamboo shoot dietary fiber. LWT - Food Science and Technology, 2016, 73, 425-431.	2.5	65
69	Thermosonication-induced structural changes and solution properties of mung bean protein. Ultrasonics Sonochemistry, 2020, 62, 104908.	3.8	64
70	Rheology and microstructure of myofibrillar protein–plant lipid composite gels: Effect of emulsion droplet size and membrane type. Journal of Food Engineering, 2011, 106, 318-324.	2.7	63
71	Protection of lung fibroblast MRC-5 cells against hydrogen peroxide-induced oxidative damage by 0.1–2.8kDa antioxidative peptides isolated from whey protein hydrolysate. Food Chemistry, 2012, 135, 540-547.	4.2	62
72	Tenderness and oxidative stability of post-mortem muscles from mature cows of various ages. Meat Science, 2007, 77, 105-113.	2.7	61

#	Article	IF	CITATIONS
73	Hydroxyl Radical-Stressed Whey Protein Isolate: Chemical and Structural Properties. Food and Bioprocess Technology, 2012, 5, 2454-2461.	2.6	61
74	Contribution of Lipid and Protein Oxidation to Rheological Differences between Chicken White and Red Muscle Myofibrillar Proteinsâ€. Journal of Agricultural and Food Chemistry, 1996, 44, 779-784.	2.4	60
75	Mass Spectrometric Evidence of Malonaldehyde and 4-Hydroxynonenal Adductions to Radical-Scavenging Soy Peptides. Journal of Agricultural and Food Chemistry, 2012, 60, 9727-9736.	2.4	60
76	Comparative time-course of lipid and myofibrillar protein oxidation in different biphasic systems under hydroxyl radical stress. Food Chemistry, 2018, 243, 231-238.	4.2	60
77	Viscoelastic Properties of Myofibrillar Protein-Polysaccharide Composite Gels. Journal of Food Science, 1993, 58, 164-167.	1.5	58
78	High-pressure homogenization combined with sulfhydryl blockage by hydrogen peroxide enhance the thermal stability of chicken breast myofibrillar protein aqueous solution. Food Chemistry, 2019, 285, 31-38.	4.2	58
79	Chemical Stability of Antioxidant-Washed Beef Heart Surimi During Frozen Storage. Journal of Food Science, 1997, 62, 939-991.	1.5	57
80	Oxidatively induced chemical changes and interactions of mixed myosin, ?-lactoglobulin and soy 7S globulin. Journal of the Science of Food and Agriculture, 2000, 80, 1601-1607.	1.7	57
81	Super-chilling (â^'0.7°C) with high-CO2 packaging inhibits biochemical changes of microbial origin in catfish (Clarias gariepinus) muscle during storage. Food Chemistry, 2016, 206, 182-190.	4.2	56
82	Dietary linseed oil supplemented with organic selenium improved the fatty acid nutritional profile, muscular selenium deposition, water retention, and tenderness of fresh pork. Meat Science, 2017, 131, 99-106.	2.7	55
83	The effect of protein oxidation on hydration and water-binding in pork packaged in an oxygen-enriched atmosphere. Meat Science, 2014, 97, 181-188.	2.7	54
84	Effects of freezing and thawing methods and storage time on thermal properties of freshwater prawns (Macrobrachium rosenbergii). Journal of the Science of Food and Agriculture, 1997, 75, 37-44.	1.7	53
85	Antioxidant and emulsifying properties of alcalase-hydrolyzed potato proteins in meat emulsions with different fat concentrations. Meat Science, 2009, 83, 24-30.	2.7	53
86	Chromatographic Separation and Tandem MS Identification of Active Peptides in Potato Protein Hydrolysate That Inhibit Autoxidation of Soybean Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2010, 58, 8825-8832.	2.4	53
87	Role of interfacial protein membrane in oxidative stability of vegetable oil substitution emulsions applicable to nutritionally modified sausage. Meat Science, 2015, 109, 56-65.	2.7	53
88	Structure-modifying alkaline and acidic pH-shifting processes promote film formation of soy proteins. Food Chemistry, 2012, 132, 1944-1950.	4.2	52
89	Inhibition of Lipid Oxidation and Rancidity in Precooked Pork Patties by Radical cavenging Licorice (<i>Glycyrrhiza glabra</i>) Extract. Journal of Food Science, 2013, 78, C1686-94.	1.5	52

90 Protein Denaturation and Functionality Losses. , 1997, , 111-140.

Youling L Xiong

#	Article	IF	CITATIONS
91	Myofibrillar Protein Cross-Linking and Gelling Behavior Modified by Structurally Relevant Phenolic Compounds. Journal of Agricultural and Food Chemistry, 2021, 69, 1308-1317.	2.4	51
92	Oxidative changes and weakened gelling ability of salt-extracted protein are responsible for textural losses in dumpling meat fillings during frozen storage. Food Chemistry, 2015, 185, 459-469.	4.2	50
93	Site-specific incorporation of sodium tripolyphosphate into myofibrillar protein from mantis shrimp (Oratosquilla oratoria) promotes protein crosslinking and gel network formation. Food Chemistry, 2020, 312, 126113.	4.2	50
94	Gelation of Beef Heart Surimi as Affected by Antioxidants. Journal of Food Science, 1996, 61, 707-711.	1.5	49
95	Disruption of secondary structure by oxidative stress alters the cross-linking pattern of myosin by microbial transglutaminase. Meat Science, 2015, 108, 97-105.	2.7	49
96	Thermally Induced Interactions and Gelation of Combined Myofibrillar Protein from White and Red Broiler Muscles. Journal of Food Science, 1992, 57, 581-585.	1.5	48
97	Hydrolyzed wheat gluten suppresses transglutaminase-mediated gelation but improves emulsification of pork myofibrillar protein. Meat Science, 2008, 80, 535-544.	2.7	48
98	Rheological Enhancement of Pork Myofibrillar Protein–Lipid Emulsion Composite Gels via Glucose Oxidase Oxidation/Transglutaminase Cross-Linking Pathway. Journal of Agricultural and Food Chemistry, 2017, 65, 8451-8458.	2.4	48
99	Interaction and Functionality of Mixed Myofibrillar and Enzyme-hydrolyzed Soy Proteins. Journal of Food Science, 2003, 68, 803-809.	1.5	47
100	Salt- and pyrophosphate-induced structural changes in myofibrils from chicken red and white muscles. Journal of the Science of Food and Agriculture, 2000, 80, 1176-1182.	1.7	46
101	Effect of soy protein substitution for sodium caseinate on the transglutaminate-induced cold and thermal gelation of myofibrillar protein. Food Research International, 2009, 42, 941-948.	2.9	46
102	Characteristic antioxidant activity and comprehensive flavor compound profile of scallop (Chlamys) Tj ETQq0 0 (Ο rgBT /Ον 4. 2	erlock 10 Tf 5
103	Interfacial competitive adsorption of different amphipathicity emulsifiers and milk protein affect fat crystallization, physical properties, and morphology of frozen aerated emulsion. Food Hydrocolloids, 2019, 87, 670-678.	5.6	46
104	Identification of Cross-linking Site(s) of Myosin Heavy Chains in Oxidatively Stressed Chicken Myofibrils. Journal of Food Science, 2006, 71, C196-C199.	1.5	45
105	Synergistic Inhibition of Lipid Oxidation by Pea Protein Hydrolysate Coupled with Licorice Extract in a Liposomal Model System. Journal of Agricultural and Food Chemistry, 2013, 61, 8452-8461.	2.4	45
106	Oxidation promotes cross-linking but impairs film-forming properties of whey proteins. Journal of Food Engineering, 2013, 115, 11-19.	2.7	44
107	Protein Oxidation at Different Salt Concentrations Affects the Crossâ€Linking and Gelation of Pork Myofibrillar Protein Catalyzed by Microbial Transglutaminase. Journal of Food Science, 2013, 78, C823-31.	1.5	44
108	Glucose oxidase promotes gallic acid-myofibrillar protein interaction and thermal gelation. Food	4.2	44

Chemistry, 2019, 293, 529-536.

#	Article	IF	CITATIONS
109	Inhibition of oxidation during washing improves the functionality of bovine cardiac myofibrillar protein Journal of Agricultural and Food Chemistry, 1993, 41, 2267-2271.	2.4	42
110	Identification of Restricting Factors That Inhibit Swelling of Oxidized Myofibrils during Brine Irrigation. Journal of Agricultural and Food Chemistry, 2009, 57, 10999-11007.	2.4	41
111	Textural properties, microstructure and digestibility of mungbean starch–flaxseed protein composite gels. Food Hydrocolloids, 2022, 126, 107482.	5.6	41
112	Textural Properties of Pork Frankfurters Containing Thermally/Enzymatically Modified Soy Proteins. Journal of Food Science, 2003, 68, 1220-1224.	1.5	40
113	Myoprotein–phytophenol interaction: Implications for muscle food structureâ€forming properties. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2801-2824.	5.9	40
114	Ultrasound-induced structural modification and thermal properties of oat protein. LWT - Food Science and Technology, 2021, 149, 111861.	2.5	40
115	Gelation of Chicken Muscle Myofibrillar Proteins Treated with Protease Inhibitors and Phosphates. Journal of Agricultural and Food Chemistry, 1997, 45, 3437-3442.	2.4	39
116	Antimicrobial Activity of Several Herb and Spice Extracts in Culture Medium and in Vacuum-Packaged Pork. Journal of Food Protection, 2007, 70, 641-647.	0.8	39
117	Rheology and microstructure of myofibrillar protein–starch composite gels: Comparison of native and modified starches. International Journal of Biological Macromolecules, 2018, 118, 988-996.	3.6	39
118	Genipin-Aided Protein Cross-linking to Modify Structural and Rheological Properties of Emulsion-Filled Hempseed Protein Hydrogels. Journal of Agricultural and Food Chemistry, 2019, 67, 12895-12903.	2.4	39
119	Synergistic recovery and enhancement of gelling properties of oxidatively damaged myofibrillar protein by -lysine and transglutaminase. Food Chemistry, 2021, 358, 129860.	4.2	39
120	Structural and rheological properties of mung bean protein emulsion as a liquid egg substitute: The effect of pH shifting and calcium. Food Hydrocolloids, 2022, 126, 107485.	5.6	39
121	Effect of inulin on the rheological properties of silken tofu coagulated with glucono-δ-lactone. Journal of Food Engineering, 2009, 90, 511-516.	2.7	38
122	Binding of Gallic Acid and Epigallocatechin Gallate to Heat-Unfolded Whey Proteins at Neutral pH Alters Radical Scavenging Activity of in Vitro Protein Digests. Journal of Agricultural and Food Chemistry, 2017, 65, 8443-8450.	2.4	38
123	PHYSICOCHEMICAL AND SENSORY CHARACTERISTICS OF FLAVORED SOYMILK DURING REFRIGERATION STORAGE. Journal of Food Quality, 2001, 24, 513-526.	1.4	37
124	Microbial transglutaminase-induced structural and rheological changes of cationic and anionic myofibrillar proteins. Meat Science, 2012, 91, 36-42.	2.7	37
125	Comparative structural and emulsifying properties of ultrasound-treated pea (Pisum sativum L.) protein isolate and the legumin and vicilin fractions. Food Research International, 2022, 156, 111179.	2.9	37
126	Polyphosphate and myofibrillar protein extract promote transglutaminase-mediated enhancements of rheological and textural properties of PSE pork meat batters. Meat Science, 2017, 128, 40-46.	2.7	36

#	Article	IF	CITATIONS
127	Interfacial Adsorption of Peptides in Oil-in-Water Emulsions Costabilized by Tween 20 and Antioxidative Potato Peptides. Journal of Agricultural and Food Chemistry, 2014, 62, 11575-11581.	2.4	35
128	Fractionation, Separation, and Identification of Antioxidative Peptides in Potato Protein Hydrolysate that Enhance Oxidative Stability of Soybean Oil Emulsions. Journal of Food Science, 2010, 75, C760-5.	1.5	32
129	Controlled Cross-Linking with Glucose Oxidase for the Enhancement of Gelling Potential of Pork Myofibrillar Protein. Journal of Agricultural and Food Chemistry, 2016, 64, 9523-9531.	2.4	32
130	Inhibition of hazardous compound formation in muscle foods by antioxidative phytophenols. Annals of the New York Academy of Sciences, 2017, 1398, 37-46.	1.8	32
131	Zinc-binding behavior of hemp protein hydrolysates: Soluble versus insoluble zinc-peptide complexes. Journal of Functional Foods, 2018, 49, 105-112.	1.6	32
132	Morphological Examinations of Oxidatively Stressed Pork Muscle and Myofibrils upon Salt Marination and Cooking To Elucidate the Water-Binding Potential. Journal of Agricultural and Food Chemistry, 2011, 59, 13026-13034.	2.4	31
133	Functional Stability of Antioxidantâ€washed, Cryoprotectantâ€ŧreated Beef Heart Surimi During Frozen Storage. Journal of Food Science, 1998, 63, 293-298.	1.5	30
134	Hydroxyl Radical-Stressed Whey Protein Isolate: Functional and Rheological Properties. Food and Bioprocess Technology, 2013, 6, 169-176.	2.6	30
135	Influence of Gender and Spawning on Meat Quality of Australian Red Claw Crayfish (Cherax) Tj ETQq1 1 0.7843	14 rgBT /C)verlgck 10 Tf
136	A simple, reliable and reproductive method to obtain experimental pale, soft and exudative (PSE) pork. Meat Science, 2013, 93, 489-494.	2.7	28
137	Synergy of Licorice Extract and Pea Protein Hydrolysate for Oxidative Stability of Soybean Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2014, 62, 8204-8213.	2.4	28
138	Interfacial peptide partitioning and undiminished antioxidative and emulsifying activity of oxidatively stressed soy protein hydrolysate in an O/W emulsion. LWT - Food Science and Technology, 2015, 61, 322-329.	2.5	28
139	Rheological properties of mixed muscle/nonmuscle protein emulsions treated with transglutaminase at two ionic strengths. International Journal of Food Science and Technology, 2003, 38, 777-785.	1.3	27
140	Sensitivity of oat protein solubility to changing ionic strength and pH. Journal of Food Science, 2021, 86, 78-85.	1.5	27
141	Gelation enhancement of soy protein isolate by sequential low―and ultrahighâ€ŧemperature twoâ€stage preheating treatments. International Journal of Food Science and Technology, 2014, 49, 2529-2537.	1.3	25
142	Competitive adsorption and dilatational rheology of pork myofibrillar and sarcoplasmic proteins at the O/W emulsion interface. Food Hydrocolloids, 2021, 118, 106816.	5.6	25
143	Rheological, structural, and water-immobilizing properties of mung bean protein-based fermentation-induced gels: Effect of pH-shifting and oil imbedment. Food Hydrocolloids, 2022, 129, 107607.	5.6	25
144	Coomassie Brilliant Blue-binding: a simple and effective method for the determination of water-insoluble protein surface hydrophobicity. Analytical Methods, 2016, 8, 790-795.	1.3	24

#	Article	IF	CITATIONS
145	EXTRACTION AND CHARACTERIZATION OF POLYPHENOL OXIDASE IN PAWPAW (ASIMINA TRILOBA) FRUIT. Journal of Food Biochemistry, 2007, 31, 603-620.	1.2	23
146	Oxidation in HiOx-packaged pork Longissimus muscle predisposes myofibrillar and sarcoplasmic proteins to N-nitrosamine formation in nitrite-curing solution. Meat Science, 2013, 95, 465-471.	2.7	23
147	Physicochemical changes of myosin and gelling properties of washed tilapia mince as influenced by oxidative stress and microbial transglutaminase. Journal of Food Science and Technology, 2015, 52, 3824-36.	1.4	23
148	Stabilization of cooked cured beef color by radical-scavenging pea protein and its hydrolysate. LWT - Food Science and Technology, 2015, 61, 352-358.	2.5	23
149	Oxidationâ€Initiated Myosin Subfragment Crossâ€Linking and Structural Instability Differences between White and Red Muscle Fiber Types. Journal of Food Science, 2015, 80, C288-97.	1.5	23
150	Calcium-aided fabrication of pea protein hydrogels with filler emulsion particles coated by pH12-shifting and ultrasound treated protein. Food Hydrocolloids, 2022, 125, 107396.	5.6	23
151	Technologies and Mechanisms for Safety Control of Ready-to-eat Muscle Foods: An Updated Review. Critical Reviews in Food Science and Nutrition, 2015, 55, 1886-1901.	5.4	22
152	Thermal transitions and dynamic gelling properties of oxidatively modified myosin, ?-lactoglobulin, soy 7S globulin and their mixtures. Journal of the Science of Food and Agriculture, 2000, 80, 1728-1734.	1.7	21
153	The preservation of the quality of the muscle in frozen Australian red claw crayfish (Cherax) Tj ETQq1 1 0.784314 Science and Technology, 2005, 40, 841-848.	rgBT /Ove 1.3	rlock 10 Tf 3 21
154	Use of Alfalfa Hay, Compared to Feeding Practical Diets Containing Two Protein Levels, on Growth, Survival, Body Composition, and Processing Traits of Australian Red Claw Crayfish, Cherax quadricarinatus, Grown in Ponds. Journal of the World Aquaculture Society, 2007, 38, 218-230.	1.2	21
155	Quality Changes in Australian Red Claw Crayfish,Cherax quadricarinatus, Stored at 0°C. Journal of Applied Aquaculture, 2002, 12, 53-66.	0.7	20
156	Shelf-stability enhancement of precooked red claw crayfish (Cherax quadricarinatus) tails by modified CO2/O2/N2 gas packaging. LWT - Food Science and Technology, 2008, 41, 1431-1436.	2.5	20
157	QUALITY CHANGES IN AUSTRALIAN RED CLAW CRAYFISH (CHERAX QUADRICARINATUS) SUBJECTED TO MULTIPLE FREEZING-THAWING CYCLES. Journal of Food Quality, 2003, 26, 285-298.	1.4	19
158	Effect of Xanthan Gum/Soybean Fiber Ratio in the Batter on Oil Absorption and Quality Attributes of Fried Breaded Fish Nuggets. Journal of Food Science, 2018, 83, 1832-1838.	1.5	19
159	Phosphates and Muscle Fiber Type Influence Thermal Transitions in Porcine Salt-Soluble Protein Aggregation. Journal of Food Science, 1992, 57, 1304-1304.	1.5	18
160	Dynamic rheological studies on salt-soluble proteins from three porcine muscles. Food Hydrocolloids, 1993, 7, 137-146.	5.6	18
161	Properties of restructured beef steaks from forage- and grain-fed cattle as affected by antioxidant and flavoring agents. Meat Science, 2003, 65, 539-546.	2.7	18
162	Influence of reconstituted gluten fractions on the short-term and long-term retrogradation of wheat starch. Food Hydrocolloids, 2022, 130, 107716.	5.6	18

#	Article	IF	CITATIONS
163	Xanthan Enhances Water Binding and Gel Formation of Transglutaminaseâ€Treated Porcine Myofibrillar Proteins. Journal of Food Science, 2010, 75, E178-85.	1.5	17
164	Examination of the Causes of Instability of Soy Protein Isolate During Storage Through Probing of the Heatâ€Induced Aggregation. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 1075-1084.	0.8	17
165	Textural and sensorial quality protection in frozen dumplings through the inhibition of lipid and protein oxidation with clove and rosemary extracts. Journal of the Science of Food and Agriculture, 2019, 99, 4739-4747.	1.7	17
166	Effects of Freezing and Thawing Methods and Storage Time on Physicochemical Properties of Freshwater Prawns(Macrobrachium rosenbergii). Journal of Aquatic Food Product Technology, 1998, 7, 47-68.	0.6	16
167	Mild Protein Oxidation Enhanced Hydration and Myofibril Swelling Capacity of Fresh Ground Pork Muscle Packaged in High Oxygen Atmosphere. Journal of Food Science, 2011, 76, C760-7.	1.5	16
168	Upregulation of antioxidant enzymes by organic mineral co-factors to improve oxidative stability and quality attributes of muscle from laying hens. Food Research International, 2019, 125, 108575.	2.9	16
169	Mild oxidation promotes myosin S2 cross-linking by microbial transglutaminase. Food Chemistry, 2019, 287, 390-397.	4.2	16
170	Frozen storage stability of antioxidant-treated raw restructured beef steaks made from mature cows. Meat Science, 2007, 77, 562-569.	2.7	15
171	Augmentation of water-holding and textural properties of breast meat from oxidatively stressed broilers by dietary antioxidant regimens. British Poultry Science, 2015, 56, 304-314.	0.8	15
172	The pH-dependent protection of α-galactosidase activity by proteins against degradative enzymes during soymilk inÂvitro digestion. LWT - Food Science and Technology, 2016, 69, 244-250.	2.5	15
173	Grass carp peptides hydrolysed by the combination of Alcalase and Neutrase: Angiotensinâ€l converting enzyme (<scp>ACE</scp>) inhibitory activity, antioxidant activities and physicochemical profiles. International Journal of Food Science and Technology, 2016, 51, 499-508.	1.3	15
174	Effects of Supplementation of Microalgae (Aurantiochytrium sp.) to Laying Hen Diets on Fatty Acid Content, Health Lipid Indices, Oxidative Stability, and Quality Attributes of Meat. Foods, 2020, 9, 1271.	1.9	15
175	Physicochemical and Microstructural Characterization of Whey Protein Films Formed with Oxidized Ferulic/Tannic Acids. Foods, 2021, 10, 1599.	1.9	15
176	Textural attributes and oxidative stability of pork longissimus muscle injected with marbling-like emulsified lipids. Meat Science, 2011, 89, 209-216.	2.7	14
177	Oxidation desensitizes actomyosin to magnesium pyrophosphate-induced dissociation. Food Chemistry, 2013, 141, 662-668.	4.2	14
178	Control of wheat starch rheological properties and gel structure through modulating granule structure change by reconstituted gluten fractions. International Journal of Biological Macromolecules, 2021, 193, 1707-1715.	3.6	14
179	Functional Properties of Myofibrillar Proteins from Cold-Shortened and Thaw-Rigor Bovine Muscles. Journal of Food Science, 1993, 58, 720-723.	1.5	13
180	Influence of gender and spawning on thermal stability and proteolytic degradation of proteins in Australian red claw crayfish (Cherax quadricarinatus) muscle stored at 2AA°C. International Journal of Food Science and Technology, 2007, 42, 1073-1079.	1.3	12

#	Article	IF	CITATIONS
181	Protein Oxidation in Foods: Mechanisms, Consequences, and Antioxidant Solutions. Foods, 2021, 10, 2346.	1.9	12
182	Storage Stability of Antioxidant-Washed Myofibrils From Chicken White and Red Muscle. Journal of Food Science, 1996, 61, 890-894.	1.5	11
183	Protease Activity in Post-Mortem Red Swamp Crayfish (<i>Procambarus clarkii</i>) Muscle Stored in Modified Atmosphere Packaging. Journal of Agricultural and Food Chemistry, 2008, 56, 8658-8663.	2.4	11
184	Influence of inulin/oligofructose on the acidâ€induced cold aggregation and gelation of preheated soy proteins. Journal of the Science of Food and Agriculture, 2009, 89, 2650-2658.	1.7	10
185	Oxidative polyaldehyde production: a novel approach to the conjugation of dextran with soy peptides for improved emulsifying properties. Journal of Food Science and Technology, 2016, 53, 3215-3224.	1.4	10
186	Cellular antioxidant mechanism of selenium-enriched yeast diets in the protection of meat quality of heat-stressed hens. Food Bioscience, 2021, 39, 100798.	2.0	10
187	Multifaceted functionality of <scp>l</scp> -arginine in modulating the emulsifying properties of pea protein isolate and the oxidation stability of its emulsions. Food and Function, 2022, 13, 1336-1347.	2.1	10
188	Influence of salt and pH on the solubility and structural characteristics of transglutaminase-treated wheat gluten hydrolysateâ~†. Food Chemistry, 2007, 107, 1131-1131.	4.2	9
189	Hydroxyl radical oxidation destabilizes subfragment-1 but not the rod of myosin in chicken myofibrils. Food Chemistry, 2008, 106, 661-668.	4.2	9
190	The Storage and Preservation of Meat. , 2017, , 205-230.		9
191	Partial Removal of Phenolics Coupled with Alkaline pH Shift Improves Canola Protein Interfacial Properties and Emulsion in In Vitro Digestibility. Foods, 2021, 10, 1283.	1.9	9
192	The Effect of Batter Characteristics on Protein-Aided Control of Fat Absorption in Deep-Fried Breaded Fish Nuggets. Foods, 2022, 11, 147.	1.9	9
193	Evidence of a urea-induced sulfhydryl oxidation reaction in proteins Agricultural and Biological Chemistry, 1990, 54, 2157-2159.	0.3	8
194	Ca2+-selective electrode: A simple method to measure the phytase-aided release of bound calcium in soymilk. Journal of Food Composition and Analysis, 2015, 39, 43-47.	1.9	8
195	Effect of the wheat starch/wheat protein ratio in a batter on fat absorption and quality attributes of fried battered and breaded fish nuggets. Journal of Food Science, 2020, 85, 2098-2104.	1.5	8
196	Modification of Muscle Protein Functionality by Antioxidants. Advances in Experimental Medicine and Biology, 1997, 415, 95-108.	0.8	8
197	Postmortem Calcium Chloride Injection Alters Ultrastructure and Improves Tenderness of Mature Chinese Yellow Cattle Longissimus Muscle. Journal of Food Science, 2006, 71, C124-C129.	1.5	7
198	Fibre type-dependent response of broiler muscles to dietary antioxidant supplementation for oxidative stability enhancement. British Poultry Science, 2016, 57, 751-762.	0.8	7

#	Article	IF	CITATIONS
199	Phosphate-Mediated Water Uptake, Swelling, and Functionality of the Myofibril Architecture. , 1999, , 319-334.		6
200	Fabrication and Physicochemical Characterization of <i>Pseudosciaena crocea</i> Roe Protein‣tabilized Emulsions as a Nutrient Delivery System. Journal of Food Science, 2019, 84, 1346-1352.	1.5	6
201	Effect of degree of milling on the cadmium <i>in vitro</i> bioaccessibility in cooked rice. Journal of Food Science, 2020, 85, 3756-3763.	1.5	6
202	Curtailing Oxidationâ€Induced Loss of Myosin Gelling Potential by Pyrophosphate Through Shielding the S1 Subfragment. Journal of Food Science, 2015, 80, C1468-75.	1.5	5
203	EFFECT OF PREVENTOX ON THE STORAGE STABILITY OF RAW AND PRECOOKED PORK PATTIES. Journal of Muscle Foods, 2008, 19, 1-16.	0.5	4
204	Electrical conductivity: A simple and sensitive method to determine emulsifying capacity of proteins. Journal of Food Science, 2021, 86, 4914-4921.	1.5	4
205	Evidence of a Urea-induced Sulfhydryl Oxidation Reaction in Proteins. Agricultural and Biological Chemistry, 1990, 54, 2157-2159.	0.3	3
206	Modulation of muscle antioxidant enzymes and fresh meat quality through feeding peptide-chelated trace minerals in swine production. Food Bioscience, 2021, 42, 101191.	2.0	3
207	Dairy Proteins. , 2009, , 131-144.		3
208	Nitriteâ€Cured Color and Phosphateâ€Mediated Water Binding of Pork Muscle Proteins as Affected by Calcium in the Curing Solution. Journal of Food Science, 2012, 77, C811-7.	1.5	2
209	Effect of Vacuum Packaging on the Quality of Red Claw Crayfish, Cherax quadricarinatus, Tail Muscle during Frozen Storage1. Journal of the World Aquaculture Society, 2010, 41, 358-368.	1.2	1
210	Application of microbial trangslutaminase to improve muscle protein functionality. Journal of Biotechnology, 2008, 136, S727.	1.9	0