
Gary J Dunderdale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3431374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry A, 2017, 5, 16025-16058.	10.3	859
2	Self-lubricating organogels (SLUGs) with exceptional syneresis-induced anti-sticking properties against viscous emulsions and ices. Journal of Materials Chemistry A, 2015, 3, 12626-12630.	10.3	236
3	Electrokinetic effects in catalytic platinum-insulator Janus swimmers. Europhysics Letters, 2014, 106, 58003.	2.0	181
4	Importance of Particle Tracking and Calculating the Mean-Squared Displacement in Distinguishing Nanopropulsion from Other Processes. Langmuir, 2012, 28, 10997-11006.	3.5	159
5	Continuous, High-Speed, and Efficient Oil/Water Separation using Meshes with Antagonistic Wetting Properties. ACS Applied Materials & Interfaces, 2015, 7, 18915-18919.	8.0	98
6	Anti-Fogging/Self-Healing Properties of Clay-Containing Transparent Nanocomposite Thin Films. ACS Applied Materials & Interfaces, 2016, 8, 4318-4322.	8.0	98
7	Large-Scale and Environmentally Friendly Synthesis of pH-Responsive Oil-Repellent Polymer Brush Surfaces under Ambient Conditions. ACS Applied Materials & Interfaces, 2014, 6, 11864-11868.	8.0	92
8	Why Can Organic Liquids Move Easily on Smooth Alkyl-Terminated Surfaces?. Langmuir, 2014, 30, 4049-4055.	3.5	56
9	Physically and chemically stable ionic liquid-infused textured surfaces showing excellent dynamic omniphobicity. APL Materials, 2014, 2, 056108.	5.1	55
10	Recent Progress and Future Directions of Multifunctional (Super)Wetting Smooth/Structured Surfaces and Coatings. Advanced Functional Materials, 2020, 30, 1907772.	14.9	53
11	Sol–Gel Preparation of Initiator Layers for Surface-Initiated ATRP: Large-Scale Formation of Polymer Brushes Is Not a Dream. Macromolecules, 2018, 51, 10065-10073.	4.8	38
12	Programmable Oil/Water Separation Meshes: Water or Oil Selectivity Using Contact Angle Hysteresis. Macromolecular Materials and Engineering, 2016, 301, 1032-1036.	3.6	33
13	Coupling pH-Responsive Polymer Brushes to Electricity: Switching Thickness and Creating Waves of Swelling or Collapse. Langmuir, 2013, 29, 3628-3635.	3.5	30
14	An Underwater Superoleophobic Surface That Can Be Activated/Deactivated via External Triggers. Langmuir, 2014, 30, 13438-13446.	3.5	28
15	Polymer Brush Surfaces Showing Superhydrophobicity and Air-Bubble Repellency in a Variety of Organic Liquids. ACS Applied Materials & Interfaces, 2015, 7, 12220-12229.	8.0	21
16	pH-Dependent Control of Particle Motion through Surface Interactions with Patterned Polymer Brush Surfaces. Langmuir, 2012, 28, 12955-12961.	3.5	13
17	Controlling the Motion and Placement of Micrometer-Sized Metal Particles Using Patterned Polymer Brush Surfaces. Langmuir, 2011, 27, 11801-11805.	3.5	12
18	Simple and Scalable Protocol for Producing Hydrophobic Polymer Brushes Beyond Wafer-Scale Dimensions toward Real-Life Applications. ACS Applied Polymer Materials, 2021, 3, 1395-1405.	4.4	12

#	Article	IF	CITATIONS
19	Large-Scale Formation of Fluorosurfactant-Doped Transparent Nanocomposite Films Showing Durable Antifogging, Oil-Repellent, and Self-healing Properties. Langmuir, 2020, 36, 7439-7446.	3.5	11
20	Perfluorinated compounds are not necessary: pegylated organosilanes can endow good water sliding/removal properties. Journal of Hazardous Materials, 2020, 398, 122625.	12.4	7
21	Directed Propulsion, Chemotaxis and Clustering in Propelled Microparticles. Current Physical Chemistry, 2015, 5, 91-106.	0.2	4
22	Bio-Inspired Layered Hybrid Films Showing Long-Lasting Corrosion Resistance and Repeatable Regeneration of Surface Hydrophobicity. Journal of Nanoscience and Nanotechnology, 2016, 16, 9166-9172.	0.9	3
23	Introduction of Stimuli-Responsive Wetting/Dewetting Smart Surfaces and Interfaces. Biologically-inspired Systems, 2018, , 1-33.	0.2	Ο
24	Spatially-Regulated Deposition of Quantum Dots on the Patterned Polymer Brush. Journal of Nanoscience and Nanotechnology, 2020, 20, 5201-5210.	0.9	0