Pavel Hamet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/343102/publications.pdf

Version: 2024-02-01

65 12,209 30 61 papers citations h-index g-index

67 67 67 13815
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. New England Journal of Medicine, 2008, 358, 2560-2572.	13.9	6,447
2	Artificial intelligence in medicine. Metabolism: Clinical and Experimental, 2017, 69, S36-S40.	1.5	1,185
3	Albuminuria and Kidney Function Independently Predict Cardiovascular and Renal Outcomes in Diabetes. Journal of the American Society of Nephrology: JASN, 2009, 20, 1813-1821.	3.0	787
4	A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics, 2019, 51, 957-972.	9.4	549
5	Follow-up of Blood-Pressure Lowering and Glucose Control in Type 2 Diabetes. New England Journal of Medicine, 2014, 371, 1392-1406.	13.9	520
6	Impact of age, age at diagnosis and duration of diabetes on the risk of macrovascular and microvascular complications and death in type 2 diabetes. Diabetologia, 2014, 57, 2465-2474.	2.9	346
7	Combined Effects of Routine Blood Pressure Lowering and Intensive Glucose Control on Macrovascular and Microvascular Outcomes in Patients With Type 2 Diabetes. Diabetes Care, 2009, 32, 2068-2074.	4.3	230
8	The angiotensin II type 1 receptor and receptor-associated proteins. Cell Research, 2001, 11, 165-180.	5.7	152
9	Hypertension. Journal of Hypertension, 1998, 16, 397-418.	0.3	137
10	Genome-wide Association Studies Identify Genetic Loci Associated With Albuminuria in Diabetes. Diabetes, 2016, 65, 803-817.	0.3	131
11	Emergence of Sex Differences in Prevalence of High Systolic Blood Pressure. Circulation, 2006, 114, 2663-2670.	1.6	128
12	Contemporary model for cardiovascular risk prediction in people with type 2 diabetes. European Journal of Cardiovascular Prevention and Rehabilitation, 2011, 18, 393-398.	3.1	127
13	Genetics and genomics of depression. Metabolism: Clinical and Experimental, 2005, 54, 10-15.	1.5	92
14	A Common Variant of the <i>FTO</i> Gene Is Associated With Not Only Increased Adiposity but Also Elevated Blood Pressure in French Canadians. Circulation: Cardiovascular Genetics, 2009, 2, 260-269.	5.1	84
15	Genetics of the sleep-wake cycle and its disorders. Metabolism: Clinical and Experimental, 2006, 55, S7-S12.	1.5	67
16	Environmental and genetic contributions to diabetes. Metabolism: Clinical and Experimental, 2019, 100, 153952.	1.5	61
17	Ubiquitous [Na+]i/[K+]i-Sensitive Transcriptome in Mammalian Cells: Evidence for Ca2+i-Independent Excitation-Transcription Coupling. PLoS ONE, 2012, 7, e38032.	1.1	59
18	ARMC5 mutations in a large French-Canadian family with cortisol-secreting \hat{I}^2 -adrenergic/vasopressin responsive bilateral macronodular adrenal hyperplasia. European Journal of Endocrinology, 2016, 174, 85-96.	1.9	55

#	Article	IF	CITATIONS
19	Systematic, Genome-Wide, Sex-Specific Linkage of Cardiovascular Traits in French Canadians. Hypertension, 2008, 51, 1156-1162.	1.3	53
20	Sucrose feeding during pregnancy and lactation elicits distinct metabolic response in offspring of an inbred genetic model of metabolic syndrome. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1318-E1324.	1.8	48
21	Gene-environment interactions in hypertension. Current Hypertension Reports, 1999, 1, 42-50.	1.5	47
22	Heritability Estimates of Obesity Measures in Siblings With and Without Hypertension. Hypertension, 2001, 38, 41-47.	1.3	43
23	Rat model of familial combined hyperlipidemia as a result of comparative mapping. Physiological Genomics, 2004, 17, 38-47.	1.0	39
24	Genome-Wide Scan for Linkage to Obesity-Associated Hypertension in French Canadians. Hypertension, 2005, 46, 1280-1285.	1.3	39
25	Impact of genetic and epigenetic factors from early life to later disease. Metabolism: Clinical and Experimental, 2008, 57, S27-S31.	1.5	37
26	Genetic mapping of habitual substance use, obesity-related traits, responses to mental and physical stress, and heart rate and blood pressure measurements reveals shared genes that are overrepresented in the neural synapse. Hypertension Research, 2012, 35, 585-591.	1.5	37
27	Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiological Genomics, 2005, 21, 243-252.	1.0	36
28	Mapping of quantitative trait loci (QTL) of differential stress gene expression in rat recombinant inbred strains. Journal of Hypertension, 2000, 18, 545-551.	0.3	35
29	Artificial Intelligence and Machine Learning in Endocrinology and Metabolism: The Dawn of a New Era. Frontiers in Endocrinology, 2019, 10, 185.	1.5	35
30	Contribution of Autosomal Loci and the Y Chromosome to the Stress Response in Rats. Hypertension, 2000, 35, 568-573.	1.3	31
31	Predictors of Target Organ Damage in Hypertensive Blacks and Whites. Hypertension, 2001, 38, 761-766.	1.3	31
32	Transcriptomic Changes Triggered by Hypoxia: Evidence for HIF- $1\hat{l}_{\pm}$ -Independent, [Na+]i/[K+]i-Mediated, Excitation-Transcription Coupling. PLoS ONE, 2014, 9, e110597.	1.1	30
33	Salt and gene expression: evidence for [Na+]i/[K+]i-mediated signaling pathways. Pflugers Archiv European Journal of Physiology, 2015, 467, 489-498.	1.3	30
34	Time- and dose dependent actions of cardiotonic steroids on transcriptome and intracellular content of Na+ and K+: a comparative analysis. Scientific Reports, 2017, 7, 45403.	1.6	30
35	Combination of Changes in Estimated GFR and Albuminuria and the Risk of Major Clinical Outcomes. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 862-872.	2.2	29
36	Effect of metoclopramide on plasma catecholamine release in essential hypertension. Clinical Pharmacology and Therapeutics, 1985, 37, 372-375.	2.3	28

#	Article	IF	Citations
37	Dietâ€induced Obesity Delays Cardiovascular Recovery from Stress in Spontaneously Hypertensive Rats. Obesity, 2004, 12, 1951-1958.	4.0	28
38	Key Considerations and Methods in the Study of Gene–Environment Interactions. American Journal of Hypertension, 2016, 29, 891-899.	1.0	28
39	PROX1 gene CC genotype as a major determinant of early onset of type 2 diabetes in slavic study participants from Action in Diabetes and Vascular Disease. Journal of Hypertension, 2017, 35, S24-S32.	0.3	28
40	Effect of Upright Posture and Isoproterenol Infusion on Cyclic Adenosine Monophosphate Excretion in Control Subjects and Patients with Labile Hypertension.1. Journal of Clinical Endocrinology and Metabolism, 1973, 36, 218-226.	1.8	24
41	Predicting the Effects of Blood Pressure–Lowering Treatment on Major Cardiovascular Events for Individual Patients With Type 2 Diabetes Mellitus. Hypertension, 2015, 65, 115-121.	1.3	24
42	Polygenic risk scores predict diabetes complications and their response to intensive blood pressure and glucose control. Diabetologia, 2021, 64, 2012-2025.	2.9	24
43	Identification of Hypertension-Related QTLs in African American Sib Pairs. Hypertension, 2002, 40, 634-639.	1.3	22
44	NKCC1 and hypertension: Role in the regulation of vascular smooth muscle contractions and myogenic tone. Annals of Medicine, 2012, 44, S111-S118.	1.5	22
45	Responses to tyramine and norepinephrine after imipramine and trazodone. Clinical Pharmacology and Therapeutics, 1979, 26, 24-30.	2.3	21
46	A Genealogical Study of Essential Hypertension with and without Obesity in French Canadians. Obesity, 2002, 10, 463-470.	4.0	21
47	Polygenic Overlap Between Kidney Function and Large Artery Atherosclerotic Stroke. Stroke, 2014, 45, 3508-3513.	1.0	21
48	[Na+]i-inducedc-Fosexpression is not mediated by activation of the 5′-promoter containing known transcriptional elements. FEBS Journal, 2007, 274, 3557-3567.	2.2	20
49	Current status of genome-wide scanning for hypertension. Current Opinion in Cardiology, 2007, 22, 292-297.	0.8	16
50	Biomarkers of vascular complications in type 2 diabetes. Metabolism: Clinical and Experimental, 2015, 64, S28-S32.	1.5	16
51	The Impact of Blood Pressure and Visceral Adiposity on the Association of Serum Uric Acid With Albuminuria in Adults Without Full Metabolic Syndrome. American Journal of Hypertension, 2016, 29, 1335-1342.	1.0	14
52	Genetic determinants of the stress response in cardiovascular disease. Metabolism: Clinical and Experimental, 2002, 51, 15-24.	1.5	13
53	Increased Renal Epithelial Na Channel Expression and Activity Correlate With Elevation of Blood Pressure in Spontaneously Hypertensive Rats. Hypertension, 2013, 62, 731-737.	1.3	13
54	Resolving the composite trait of hypertension into its pharmacogenetic determinants by acute pharmacological modulation of blood pressure regulatory systems. Journal of Molecular Medicine, 2003, 81, 51-60.	1.7	12

#	Article	IF	CITATIONS
55	Economic Evaluation of a New Polygenic Risk Score to Predict Nephropathy in Adult Patients With Type 2 Diabetes. Canadian Journal of Diabetes, 2021, 45, 129-136.	0.4	8
56	Dopamine, extracellular cyclic AMP and sodium excretion. European Journal of Clinical Investigation, 1977, 7, 75-76.	1.7	7
57	Future needs in exploration of gene-environment interactions. Journal of Hypertension, 2012, 30, 1915-1916.	0.3	4
58	Integrating genomics and transcriptomics with geo-ethnicity and the environment for the resolution of complex cardiovascular diseases. Current Opinion in Molecular Therapeutics, 2005, 7, 583-7.	2.8	4
59	Direct renin inhibition: Mechanistic advantages and disadvantages compared with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers. Canadian Journal of Cardiology, 2008, 24, 44C-49C.	0.8	1
60	Radio-Telemetry in Biomedical Research - Radio-Telemetry Blood Pressure Measurements in Animal Models of Hypertension, How It Revolutionized Hypertension Research. , 0, , .		1
61	Epigenome and exposome in prenatal programming. Journal of Hypertension, 2016, 34, 2136-2137.	0.3	1
62	Invitations for the Program: 6th International Congress of Pathophysiology, "Gene–environmental Interactions in Health and Diseasesâ€, Montréal, Québec, Canada, 27–30 June 2010. Pathophysiology, 2008, 15, 209.	1.0	0
63	The Gatekeeping Function in Personalized Medicine Initiatives. Current Pharmacogenomics and Personalized Medicine, 2017, 14, 36-49.	0.2	0
64	Prehypertension in theÂEra of Personalized Medicine in 2017. Updates in Hypertension and Cardiovascular Protection, 2019, , 657-675.	0.1	0
65	Sex, Age and Gene Interactions in Cardiometabolic Diseases. , 2020, , 179-190.		O