
Jonathas Sales Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3430916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of heat-shock protein 90 enhances the susceptibility to antifungals and reduces the virulence of Cryptococcus neoformans/Cryptococcus gattii species complex. Microbiology (United) Tj ETQq1 I	10.7844314	rgBa3/Overloc
2	Candida tropicalis isolates obtained from veterinary sources show resistance to azoles and produce virulence factors. Medical Mycology, 2015, 53, 145-152.	0.3	51
3	Exogenous tyrosol inhibits planktonic cells and biofilms of Candida species and enhances their susceptibility to antifungals. FEMS Yeast Research, 2015, 15, fov012.	1.1	41
4	Terpinen-4-ol, tyrosol, and Î ² -lapachone as potential antifungals against dimorphic fungi. Brazilian Journal of Microbiology, 2016, 47, 917-924.	0.8	40
5	Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes. Journal of Medical Microbiology, 2017, 66, 1045-1052.	0.7	34
6	Antifungal susceptibility of Sporothrix schenckii complex biofilms. Medical Mycology, 2018, 56, 297-306.	0.3	32
7	Essential oils encapsulated in chitosan microparticles against Candida albicans biofilms. International Journal of Biological Macromolecules, 2021, 166, 621-632.	3.6	30
8	Malassezia pachydermatis from animals: Planktonic and biofilm antifungal susceptibility and its virulence arsenal. Veterinary Microbiology, 2018, 220, 47-52.	0.8	29
9	Simvastatin inhibits planktonic cells and biofilms of Candida and Cryptococcus species. Brazilian Journal of Infectious Diseases, 2015, 19, 459-465.	0.3	28
10	Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans. Veterinary Microbiology, 2016, 192, 213-219.	0.8	25
11	<i>In vitro</i> antifungal activity of miltefosine and levamisole: their impact on ergosterol biosynthesis and cell permeability of dimorphic fungi. Journal of Applied Microbiology, 2015, 119, 962-969.	1.4	22
12	Potassium iodide and miltefosine inhibit biofilms of Sporothrix schenckii species complex in yeast and filamentous forms. Medical Mycology, 2019, 57, 764-772.	0.3	19
13	Antifungal susceptibility and virulence of Candida parapsilosis species complex: an overview of their pathogenic potential. Journal of Medical Microbiology, 2018, 67, 903-914.	0.7	19
14	Evidence of Fluconazole-Resistant Candida Species in Tortoises and Sea Turtles. Mycopathologia, 2015, 180, 421-426.	1.3	18
15	The HIV aspartyl protease inhibitor ritonavir impairs planktonic growth, biofilm formation and proteolytic activity in <i>Trichosporon</i> spp Biofouling, 2017, 33, 640-650.	0.8	18
16	In vitro activity of azole derivatives and griseofulvin against planktonic and biofilm growth of clinical isolates of dermatophytes. Mycoses, 2018, 61, 449-454.	1.8	18
17	Inhibitory effect of a lipopeptide biosurfactant produced by <i>Bacillus subtilis</i> on planktonic and sessile cells of <i>Trichosporon</i> spp Biofouling, 2018, 34, 309-319.	0.8	16
18	Pentamidine inhibits the growth of <i>Sporothrix schenckii</i> complex and exhibits synergism with antifungal agents. Future Microbiology, 2018, 13, 1129-1140.	1.0	16

#	Article	IF	CITATIONS
19	Trends in antifungal susceptibility and virulence of <i>Candida</i> spp. from the nasolacrimal duct of horses. Medical Mycology, 2016, 54, 147-154.	0.3	15
20	The yeast, the antifungal, and the wardrobe: a journey into antifungal resistance mechanisms of <i>Candida tropicalis</i> . Canadian Journal of Microbiology, 2020, 66, 377-388.	0.8	15
21	Yeasts from the microbiota of bats: a focus on the identification and antimicrobial susceptibility of cryptic species of Candida. Journal of Medical Microbiology, 2016, 65, 1225-1228.	0.7	14
22	Biofilms of <i>Candida</i> spp. from the ocular conjunctiva of horses with reduced azole susceptibility: a complicating factor for the treatment of keratomycosis?. Veterinary Ophthalmology, 2017, 20, 539-546.	0.6	13
23	β-lactam antibiotics & vancomycin increase the growth & virulence of <i>Candida</i> spp Future Microbiology, 2018, 13, 869-875.	1.0	12
24	Biofilm formation on cat claws by Sporothrix species: An ex vivo model. Microbial Pathogenesis, 2021, 150, 104670.	1.3	11
25	Antifungal activity of promethazine and chlorpromazine against planktonic cells and biofilms of Cryptococcus neoformans/Cryptococcus gattii complex species. Medical Mycology, 2020, 58, 906-912.	0.3	10
26	β-Lactam antibiotics and vancomycin inhibit the growth of planktonic and biofilm Candida spp.: An additional benefit of antibiotic-lock therapy?. International Journal of Antimicrobial Agents, 2015, 45, 420-423.	1.1	9
27	RYP1 gene as a target for molecular diagnosis of histoplasmosis. Journal of Microbiological Methods, 2016, 130, 112-114.	0.7	9
28	Antiretroviral drugs saquinavir and ritonavir reduce inhibitory concentration values of itraconazole against Histoplasma capsulatum strains in vitro. Brazilian Journal of Infectious Diseases, 2016, 20, 155-159.	0.3	9
29	Aeromonas and Plesiomonas species from scarlet ibis (Eudocimus ruber) and their environment: monitoring antimicrobial susceptibility and virulence. Antonie Van Leeuwenhoek, 2017, 110, 33-43.	0.7	9
30	Yeasts from Scarlet ibises (Eudocimus ruber): A focus on monitoring the antifungal susceptibility of Candida famata and closely related species. Medical Mycology, 2017, 55, 725-732.	0.3	9
31	In vitro effects of promethazine on cell morphology and structure and mitochondrial activity of azole-resistant Candida tropicalis. Medical Mycology, 2018, 56, 1012-1022.	0.3	7
32	Cefepime and Amoxicillin Increase Metabolism and Enhance Caspofungin Tolerance of Candida albicans Biofilms. Frontiers in Microbiology, 2019, 10, 1337.	1.5	7
33	Exogenous fungal quorum sensing molecules inhibit planktonic cell growth and modulate filamentation and biofilm formation in the <i>Sporothrix schenckii</i> complex. Biofouling, 2020, 36, 909-921.	0.8	7
34	Cryptococcus neoformans/Cryptococcus gattii species complex melanized by epinephrine: Increased yeast survival after amphotericin B exposure. Microbial Pathogenesis, 2020, 143, 104123.	1.3	7
35	Emergence of azole-resistant Candida albicans in small ruminants. Mycopathologia, 2015, 180, 277-280.	1.3	6
36	Diclofenac exhibits synergism with azoles against planktonic cells and biofilms of <i>Candida tropicalis</i> . Biofouling, 2020, 36, 528-536.	0.8	6

#	Article	IF	CITATIONS
37	Proton pump inhibitors versus <i>Cryptococcus</i> species: effects on <i>in vitro</i> susceptibility and melanin production. Future Microbiology, 2019, 14, 489-497.	1.0	5
38	Azole-Resilient Biofilms and Non-wild Type C. albicans Among Candida Species Isolated from Agricultural Soils Cultivated with Azole Fungicides: an Environmental Issue?. Microbial Ecology, 2021, 82, 1080-1083.	1.4	4
39	Darunavir inhibits Cryptococcus neoformans/Cryptococcus gattii species complex growth and increases the susceptibility of biofilms to antifungal drugs. Journal of Medical Microbiology, 2020, 69, 830-837.	0.7	4
40	Inhibitory effect of proteinase K against dermatophyte biofilms: an alternative for increasing theÂantifungal effects of terbinafine and griseofulvin. Biofouling, 2022, 38, 286-297.	0.8	4
41	In vitro inhibitory effect of statins on planktonic cells and biofilms of the Sporothrix schenckii species complex. Journal of Medical Microbiology, 2020, 69, 838-843.	0.7	3
42	Atypical chlamydoconidium-producing Trichophyton tonsurans strains from Ceará State, Northeast Brazil: investigation of taxonomy by phylogenetic analysis and biofilm susceptibility. Microbiology (United Kingdom), 2021, 167, .	0.7	2
43	Antifungal activity of deferiprone and EDTA against <i>Sporothrix</i> spp.: Effect on planktonic growth and biofilm formation. Medical Mycology, 2021, 59, 537-544.	0.3	1
44	Yeast microbiota of free-ranging amphibians and reptiles from Caatinga biome in CearÃ _i State, Northeast Brazil: High pathogenic potential of Candida famata. Ciencia Rural, 2021, 51, .	0.3	1
45	Coccidioidomycosis and Histoplasmosis in Equines: An Overview to Support the Accurate Diagnosis. Journal of Equine Veterinary Science, 2016, 40, 62-73.	0.4	0