Maurizio Costabile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3430887/publications.pdf

Version: 2024-02-01

567281 580821 36 691 15 25 citations h-index g-index papers 37 37 37 1012 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A guided interactive simulation as a tool to teach the classical approach of monoclonal antibody (MAb) production to undergraduate immunology students. Journal of Biological Education, 2024, 58, 130-143.	1.5	2
2	Folic acid deficiency increases sensitivity to DNA damage by glucose and methylglyoxal. Mutagenesis, 2022, 37, 24-33.	2.6	6
3	Proteomic Analysis of Methylglyoxal Modifications Reveals Susceptibility of Glycolytic Enzymes to Dicarbonyl Stress. International Journal of Molecular Sciences, 2022, 23, 3689.	4.1	12
4	Methylglyoxal Impairs Sister Chromatid Separation in Lymphocytes. International Journal of Molecular Sciences, 2022, 23, 4139.	4.1	2
5	Ceramide-induced integrated stress response overcomes Bcl-2 inhibitor resistance in acute myeloid leukemia. Blood, 2022, 139, 3737-3751.	1.4	20
6	Design, implementation, and assessment of an interactive simulation to teach undergraduate immunology students hemolytic disease of the newborn. American Journal of Physiology - Advances in Physiology Education, 2021, 45, 299-306.	1.6	7
7	Methylglyoxal induces chromosomal instability and mitotic dysfunction in lymphocytes. Mutagenesis, 2021, 36, 339-348.	2.6	9
8	Role of saturated and unsaturated fatty acids on dicarbonyl–albumin derived advanced glycation end products in vitro. Amino Acids, 2021, , 1.	2.7	2
9	Using a science simulation-based learning tool to develop students' active learning, self-confidence and critical thinking in academic writing. Nurse Education in Practice, 2020, 47, 102839.	2.6	15
10	Using online simulations to teach biochemistry laboratory content during <scp>COVID</scp> â€19. Biochemistry and Molecular Biology Education, 2020, 48, 509-510.	1.2	16
11	Manipulating leukocyte populations to mimic immune disease states: a novel active approach to teaching flow cytometry to undergraduate immunology students. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 247-253.	1.6	3
12	Developing an Online Simulation to Teach Enzyme Kinetics to Undergraduate Biochemistry Students. Advances in Educational Marketing, Administration, and Leadership Book Series, 2020, , 281-302.	0.2	4
13	Assay optimization for measuring the alternate complement pathway activity in Asian seabass (Lates) Tj ETQq1 1	0,7,84314	4 rgBT /Overla
14	Measuring the Asian seabass (Lates calcarifer) neutrophil respiratory burst activity by the dihydrorhodamine-123 reduction flow cytometry assay in whole blood. Fish and Shellfish Immunology, 2019, 92, 871-880.	3.6	1
15	Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene, 2019, 38, 1151-1165.	5.9	21
16	Kelch-like protein 5-mediated ubiquitination of lysine 183 promotes proteasomal degradation of sphingosine kinase 1. Biochemical Journal, 2019, 476, 3211-3226.	3.7	21
17	Colocalization of intracellular specific IgA (icIgA) with influenza virus in patients' nasopharyngeal aspirate cells. Journal of Virological Methods, 2018, 252, 8-14.	2.1	5
18	Inhibition of indoleamine 2,3-dioxygenase activity by fatty acids and prostaglandins: A structure function analysis. Prostaglandins Leukotrienes and Essential Fatty Acids, 2017, 122, 7-15.	2.2	5

#	Article	IF	CITATIONS
19	Recent advances in the development of sphingosine kinase inhibitors. Cellular Signalling, 2016, 28, 1349-1363.	3.6	91
20	Prostaglandin D2 is a novel repressor of $IFN\hat{1}^3$ induced indoleamine-2,3-dioxygenase via the DP1 receptor and cAMP pathway. Prostaglandins Leukotrienes and Essential Fatty Acids, 2016, 110, 48-54.	2.2	9
21	Polyandric Acid A, a Clerodane Diterpenoid from the Australian Medicinal Plant <i>Dodonaea polyandra, </i> Attenuates Pro-inflammatory Cytokine Secretion in Vitro and in Vivo. Journal of Natural Products, 2014, 77, 85-91.	3.0	19
22	Arachidonic acid and its COX1/2 metabolites inhibit interferon- \hat{I}^3 mediated induction of indoleamine-2,3 dioxygenase in THP-1 cells and Human monocytes. Prostaglandins Leukotrienes and Essential Fatty Acids, 2012, 87, 119-126.	2.2	15
23	Identification and functional characterization of two novel mutations in the \hat{l} ±-helical loop (residues) Tj ETQq1 1 Human Mutation, 2012, 33, 471-475.	0.784314 2.5	rgBT /Over o
24	Measuring the 50% Haemolytic Complement (CH ₅₀) Activity of Serum. Journal of Visualized Experiments, 2010, , .	0.3	61
25	Determining the Reactivity and Titre of Serum using a Haemagglutination Assay. Journal of Visualized Experiments, 2010, , .	0.3	1
26	Leukocyte numbers and function in subjects eating n-3 enriched foods: selective depression of natural killer cell levels. Arthritis Research and Therapy, 2008, 10, R57.	3 . 5	31
27	Novel action ofn-3 polyunsaturated fatty acids: Inhibition of arachidonic acid–induced increase in tumor necrosis factor receptor expression on neutrophils and a role for proteases. Arthritis and Rheumatism, 2007, 56, 799-808.	6.7	17
28	Capture and generation of adenovirus specific T cells for adoptive immunotherapy. British Journal of Haematology, 2007, 136, 117-126.	2.5	38
29	Molecular approaches in the diagnosis of primary immunodeficiency diseases. Human Mutation, 2006, 27, 1163-1173.	2.5	23
30	The Immunomodulatory Effects of Novel \hat{I}^2 -Oxa, \hat{I}^2 -Thia, and \hat{I}^3 -Thia Polyunsaturated Fatty Acids on Human T Lymphocyte Proliferation, Cytokine Production, and Activation of Protein Kinase C and MAPKs. Journal of Immunology, 2005, 174, 233-243.	0.8	31
31	Regulation of Neutrophil Functions by Long Chain Fatty Acids. , 2005, , 169-228.		8
32	Characterization of the MEK5-ERK5 Module in Human Neutrophils and Its Relationship to ERK1/ERK2 in the Chemotactic Response. Journal of Biological Chemistry, 2004, 279, 49825-49834.	3.4	32
33	Unique Effect of Arachidonic Acid on Human Neutrophil TNF Receptor Expression: Up-Regulation Involving Protein Kinase C, Extracellular Signal-Regulated Kinase, and Phospholipase A2. Journal of Immunology, 2003, 171, 2616-2624.	0.8	21
34	Selective deficiency in protein kinase C isoenzyme expression and inadequacy in mitogen-activated protein kinase activation in cord blood T cells. Biochemical Journal, 2003, 370, 497-503.	3.7	15
35	A Novel Long Chain Polyunsaturated Fatty Acid, \hat{l}^2 -Oxa 21:3n-3, Inhibits T Lymphocyte Proliferation, Cytokine Production, Delayed-Type Hypersensitivity, and Carrageenan-Induced Paw Reaction and Selectively Targets Intracellular Signals. Journal of Immunology, 2001, 167, 3980-3987.	0.8	21
36	Stimulation of p38 Phosphorylation and Activity by Arachidonic Acid in HeLa Cells, HL60 Promyelocytic Leukemic Cells, and Human Neutrophils. Journal of Biological Chemistry, 1998, 273, 19277-19282.	3.4	97