
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3430782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-regulated parallel process 3-D array microfabrication with metal direct-write. Applied Materials Today, 2021, 24, 101085.	2.3	4
2	Electrochemical gradients driven 3D printing of nano-twinned copper structures by direct current dynamic meniscus confined electrodeposition. Applied Materials Today, 2021, 24, 101138.	2.3	5
3	Study on 3D-Direct Ink Writing based on adding silica submicron-particles to improve the rheological properties of alumina ceramic ink. Materials Today Communications, 2021, 28, 102534.	0.9	7
4	The Composition and Magnetic Property of Co/Cu Alloy Microwires Prepared Using Meniscus-Confined Electrodeposition: Effect of [Co ²⁺], [Cu ²⁺] Concentration at the Tip of the Meniscus. Journal of the Electrochemical Society, 2021, 168, 112507.	1.3	3
5	Strong Electrorheological Performance of Smart Fluids Based on TiO2 Particles at Relatively Low Electric Field. Frontiers in Materials, 2021, 8, .	1.2	1
6	Highly Stable Multiresponsive Photonic Hydrogels Based on a Crosslinked Acrylamide-N-Isopropylacrylamide co-Polymer. Integrated Ferroelectrics, 2019, 200, 49-58.	0.3	0
7	Bipolar Electrochemistry Regulation for Dynamic Meniscus Confined Electrodeposition of Copper Micro-Structures by a Double-Anode System. Journal of the Electrochemical Society, 2019, 166, D676-D682.	1.3	8
8	Electrically responsive structural colors from colloidal crystal arrays of PS@PANI core–shell nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 75-83.	2.3	7
9	Morphology Evolutions and Mechanical Properties of In Situ Fibrillar Polylactic Acid/Thermoplastic Polyurethane Blends Fabricated by Fused Deposition Modeling. Macromolecular Materials and Engineering, 2019, 304, 1900107.	1.7	21
10	Rheological behavior of titania ink and mechanical properties of titania ceramic structures by 3D direct ink writing using high solid loading titania ceramic ink. Journal of Alloys and Compounds, 2019, 783, 321-328.	2.8	47
11	Dynamic "Scanning-Mode―Meniscus Confined Electrodepositing and Micropatterning of Individually Addressable Ultraconductive Copper Line Arrays. Journal of Physical Chemistry Letters, 2018, 9, 2380-2387.	2.1	35
12	Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling. Materials and Design, 2018, 139, 283-292.	3.3	209
13	Ultrasensitive SERS detection of propranolol based on sandwich nanostructure of molecular imprinting polymers. Sensors and Actuators B: Chemical, 2018, 255, 110-116.	4.0	25
14	Microfabrication of conductive copper patterns by meniscus-confined electrodeposition. Integrated Ferroelectrics, 2018, 190, 164-172.	0.3	5
15	A novel silica nanowire-silica composite aerogels dried at ambient pressure. Materials and Design, 2017, 115, 415-421.	3.3	68
16	Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling. Journal of Applied Polymer Science, 2017, 134, 45332.	1.3	116
17	Improved mechanical and thermal insulation properties of monolithic attapulgite nanofiber/silica aerogel composites dried at ambient pressure. Journal of Sol-Gel Science and Technology, 2017, 82, 702-711.	1.1	48
18	Effect of surface modified of phenolic resin nanospheres on the structural color under electric field. Integrated Ferroelectrics, 2017, 180, 160-167.	0.3	0

#	Article	IF	CITATIONS
19	Bonding quality and fracture analysis of polyamide 12 parts fabricated by fused deposition modeling. Rapid Prototyping Journal, 2017, 23, 973-982.	1.6	45
20	Ultralow flexural properties of copper microhelices fabricated via electrodeposition-based three-dimensional direct-writing technology. Nanoscale, 2017, 9, 12524-12532.	2.8	14
21	Vertical, capacitive microelectromechanical switches produced via direct writing of copper wires. Microsystems and Nanoengineering, 2016, 2, 16010.	3.4	20
22	Electric field induced structural color changes of highly monodisperse hollow Fe3O4@C colloidal suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498, 74-80.	2.3	10
23	Highly sensitive multiresponsive photonic hydrogels based on a crosslinked Acrylamide- N-isopropylacrylamide (AM-NIPAM) co-polymer containing Fe3O4@C crystalline colloidal arrays. Sensors and Actuators B: Chemical, 2016, 236, 399-407.	4.0	14
24	Giant electrorheological fluids with ultrahigh electrorheological efficiency based on a micro/nano hybrid calcium titanyl oxalate composite. NPG Asia Materials, 2016, 8, e322-e322.	3.8	35
25	Double-sided structural color of Fe3O4@SiO2 nanoparticles under the electric field. Journal of Alloys and Compounds, 2016, 654, 251-256.	2.8	19
26	Preparation and Optical Properties of SiO2@Fe3O4@C Colloidal Nanoparticles. Guangzi Xuebao/Acta Photonica Sinica, 2016, 45, 516003.	0.1	0
27	Effect of surface modification of SiO ₂ @TiO ₂ core–shell particles on the structural colour under an electric field. RSC Advances, 2015, 5, 6489-6493.	1.7	12
28	Study on electric field induced structural color change of Fe3O4@C hybrid nanoparticles. Materials Research Express, 2014, 1, 045037.	0.8	7
29	Electric field induced structural color changes of SiO2@TiO2 core–shell colloidal suspensions. Journal of Materials Chemistry C, 2014, 2, 1990.	2.7	69
30	Formamide-modified titanium oxide nanoparticles with high electrorheological activity. RSC Advances, 2014, 4, 29622.	1.7	20
31	Preparation of rod-like calcium titanyl oxalate with enhanced electrorheological activity and their morphological effect. Journal of Materials Chemistry C, 2014, 2, 5629.	2.7	40
32	Influence of volume fraction on the yield behavior of giant electrorheological fluid. Applied Physics Letters, 2012, 101, 101908.	1.5	8
33	Preparation and electrorheological characteristics of uniform core/shell structural particles with different polar molecules shells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410, 136-143.	2.3	33
34	Influence of thermal treatment on CTO wettability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 305-309.	2.3	5
35	The influence of high dielectric constant core on the activity of core–shell structure electrorheological fluid. Journal of Colloid and Interface Science, 2012, 378, 36-43.	5.0	47
36	Preparation of uniform titania microspheres with good electrorheological performance and their size effect. Journal of Materials Chemistry, 2011, 21, 5051.	6.7	67

#	Article	IF	CITATIONS
37	PREPARATION AND ELECTRORHEOLOGICAL EFFECT OF ACETAMIDE-MODIFIED TITANATE NANOTUBE SUSPENSIONS INSTRUCTIONS. , 2011, , .		0
38	EFFECT OF HEAT TREATMENT ON POLAR MOLECULE DOMINATED-TIO2 ELECTRORHEOLOGICAL FLUIDS. , 2011, , .		2
39	ELECTRORHEOLOGICAL PROPERTIES OF AMORPHOUS TITANIUM OXIDE PARTICLES WITH DIFFERENT SIZES. , 2011, , .		1
40	Synthesis and electrorheological properties of oxalate group-modified amorphous titanium oxide nanoparticles. Colloid and Polymer Science, 2010, 288, 1739-1744.	1.0	26
41	Synthesis and electrorheological properties of polar molecule-dominated TiO 2 particles with high yield stress. Rheologica Acta, 2010, 49, 837-843.	1.1	29
42	The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions. Journal of Molecular Catalysis A, 2010, 316, 1-7.	4.8	54
43	Facile Approach to Large-Scale Synthesis of 1D Calcium and Titanium Precipitate (CTP) with High Electrorheological Activity. ACS Applied Materials & Interfaces, 2010, 2, 621-625.	4.0	62
44	Precipitation of Uniform ZnO Particles with Controllable Layered Structure from Aqueous Solutions. Current Nanoscience, 2010, 6, 213-218.	0.7	2
45	Fabrication of uniform core–shell structural calcium and titanium precipitation particles and enhanced electrorheological activities. Nanotechnology, 2009, 20, 055604.	1.3	46
46	Preparation and electrorheological properties of a hydroxyl titanium oxalate suspension. Smart Materials and Structures, 2009, 18, 125015.	1.8	11
47	Energy-Efficient coaromatization of methane and propane. Journal of Natural Gas Chemistry, 2009, 18, 260-272.	1.8	42
48	Electrorheological properties of TiO 2 /ZnC 2 O 4 nanocomposites. Proceedings of SPIE, 2009, , .	0.8	0
49	Electrorheological property and microstructure of acetamide-modified TiO2 nanoparticles. Colloid and Polymer Science, 2008, 286, 1493-1497.	1.0	32
50	Size-controllable synthesis of monodispersed colloidal silica nanoparticles via hydrolysis of elemental silicon. Journal of Colloid and Interface Science, 2008, 326, 138-142.	5.0	42
51	Surfactant-free fabrication of α-Fe2O3 structures with flower-like morphology in aqueous solution. Journal of Crystal Growth, 2008, 311, 147-151.	0.7	12
52	The deposition of coke from methane on a Ni/MgAl2O4 catalyst. Carbon, 2007, 45, 1314-1321.	5.4	274
53	Non-Oxidative Aromatization of CH4-C3H8 over La-Promoted Zn/HZSM-5 Catalysts. Journal of Natural Gas Chemistry, 2006, 15, 52-57.	1.8	27
54	Dehydrogenation and aromatization of propane over rhenium-modified HZSM-5 catalyst. Journal of Molecular Catalysis A, 2005, 239, 222-227.	4.8	29

#	Article	IF	CITATIONS
55	Improvement of stability of out-layer MgAl <subscript>2</subscript> O <subscript>4</subscript> spinel for a Ni/MgAl <subscript>2</subscript> O <subscript>4</subscript> /Al <subscript>2</subscript> O <subscript>3catalyst in dry reforming of methane. Reaction Kinetics and Catalysis Letters, 2005, 84, 93-100.</subscript>	cript>	1
56	Improvement of stability of out-layer MgAl2O4 spinel for a Ni/MgAl2O4/Al2O3 catalyst in dry reforming of methane. Reaction Kinetics and Catalysis Letters, 2005, 84, 93-100.	0.6	22
57	Determination of Glucosinolates in Rapeseeds by Liquid Chromatography–Electrospray Mass Spectrometry. Analytical Letters, 2005, 38, 343-351.	1.0	5
58	Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis A: General, 2004, 273, 75-82.	2.2	582
59	Novel synthesis of high surface area MgAl2O4 spinel as catalyst support. Materials Letters, 2004, 58, 1920-1923.	1.3	126
60	La-based perovskite precursors preparation and its catalytic activity for CO2 reforming of CH4. Materials Letters, 2003, 57, 4450-4455.	1.3	95
61	Synthesis and Electrorheological Properties of SiO ₂ /Polyaniline Nanocomposites Prepared by <i>In Situ</i> Polymerization. Advanced Materials Research, 0, 669, 131-137.	0.3	0
62	Optical Properties of Silica Colloids Suspensions in Electric Field. Advanced Materials Research, 0, 924, 158-165.	0.3	1
63	Direct Writing of Shapeâ€Gradient Magnetic Alloy Microwire Arrays with Meniscusâ€Confined Electrodeposition Process. Advanced Materials Technologies, 0, , 2200024.	3.0	2