## Markssuel Teixeira Marvila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3430680/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Influence of incorporation of glass waste on the rheological properties of adhesive mortar.<br>Construction and Building Materials, 2017, 148, 359-368.                                                  | 3.2 | 96        |
| 2  | Technological performance of açaÃ-natural fibre reinforced cement-based mortars. Journal of<br>Building Engineering, 2021, 33, 101675.                                                                   | 1.6 | 92        |
| 3  | Performance of geopolymer tiles in high temperature and saturation conditions. Construction and Building Materials, 2021, 286, 122994.                                                                   | 3.2 | 88        |
| 4  | Technological and environmental comparative of the processing of primary sludge waste from paper industry for mortar. Journal of Cleaner Production, 2020, 249, 119336.                                  | 4.6 | 86        |
| 5  | Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials. Materials, 2021, 14, 4304.                                                     | 1.3 | 86        |
| 6  | Natural Fibers as an Alternative to Synthetic Fibers in Reinforcement of Geopolymer Matrices: A<br>Comparative Review. Polymers, 2021, 13, 2493.                                                         | 2.0 | 86        |
| 7  | Rheological and the Fresh State Properties of Alkali-Activated Mortars by Blast Furnace Slag.<br>Materials, 2021, 14, 2069.                                                                              | 1.3 | 83        |
| 8  | Use of glass polishing waste in the development of ecological ceramic roof tiles by the<br>geopolymerization process. International Journal of Applied Ceramic Technology, 2020, 17, 2649-2658.          | 1.1 | 82        |
| 9  | Effect of Granite Residue Incorporation on the Behavior of Mortars. Materials, 2019, 12, 1449.                                                                                                           | 1.3 | 80        |
| 10 | Characterizing the paper industry sludge for environmentally-safe disposal. Waste Management, 2019,<br>95, 43-52.                                                                                        | 3.7 | 77        |
| 11 | Application of Plastic Wastes in Construction Materials: A Review Using the Concept of Life-Cycle<br>Assessment in the Context of Recent Research for Future Perspectives. Materials, 2021, 14, 3549.    | 1.3 | 76        |
| 12 | Analysis of the compactness and properties of the hardened state of mortars with recycling of construction and demolition waste (CDW). Journal of Materials Research and Technology, 2020, 9, 5942-5952. | 2.6 | 73        |
| 13 | Evaluation of the use of marble waste in hydrated lime cement mortar based. Journal of Material<br>Cycles and Waste Management, 2019, 21, 1250-1261.                                                     | 1.6 | 67        |
| 14 | Eco-friendly mortars with addition of ornamental stone waste - A mathematical model approach for granulometric optimization. Journal of Cleaner Production, 2020, 248, 119283.                           | 4.6 | 67        |
| 15 | Application of eco-friendly alternative activators in alkali-activated materials: A review. Journal of<br>Building Engineering, 2021, 35, 102010.                                                        | 1.6 | 66        |
| 16 | Development of mortar for laying and coating with pineapple fibers. Revista Brasileira De Engenharia<br>Agricola E Ambiental, 2020, 24, 187-193.                                                         | 0.4 | 66        |
| 17 | Investigation of the Potential Use of CurauÃ; Fiber for Reinforcing Mortars. Fibers, 2020, 8, 69.                                                                                                        | 1.8 | 65        |
| 18 | Circular economy and durability in geopolymers ceramics pieces obtained from glass polishing waste.<br>International Journal of Applied Ceramic Technology, 2021, 18, 1891-1900.                         | 1.1 | 61        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Gypsum plaster using rock waste: A proposal to repair the renderings of historical buildings in Brazil.<br>Construction and Building Materials, 2020, 250, 118786.                                                         | 3.2 | 59        |
| 20 | Clay Ceramic Waste as Pozzolan Constituent in Cement for Structural Concrete. Materials, 2021, 14, 2917.                                                                                                                   | 1.3 | 58        |
| 21 | Study on the replacement of the hydrated lime by kaolinitic clay in mortars. Advances in Applied Ceramics, 2019, 118, 373-380.                                                                                             | 0.6 | 57        |
| 22 | Reaction mechanisms of alkali-activated materials. Revista IBRACON De Estruturas E Materiais, 2021, 14,                                                                                                                    | 0.3 | 54        |
| 23 | Technological Perspective for Use the Natural Pineapple Fiber in Mortar to Repair Structures. Waste and Biomass Valorization, 2021, 12, 5131-5145.                                                                         | 1.8 | 52        |
| 24 | Rheology, Hydration, and Microstructure of Portland Cement Pastes Produced with Ground AçaÃ-<br>Fibers. Applied Sciences (Switzerland), 2021, 11, 3036.                                                                    | 1.3 | 50        |
| 25 | Influence of sintering temperature of a ceramic substrate in mortar adhesion for civil construction.<br>Journal of Building Engineering, 2018, 19, 342-348.                                                                | 1.6 | 48        |
| 26 | Circular economy in cementitious ceramics: Replacement of hydrated lime with a stoichiometric<br>balanced combination of clay and marble waste. International Journal of Applied Ceramic Technology,<br>2021, 18, 192-202. | 1.1 | 48        |
| 27 | Assessing the potential of sludge generated by the pulp and paper industry in assembling locking blocks. Journal of Building Engineering, 2019, 23, 334-340.                                                               | 1.6 | 44        |
| 28 | Durability of Soil-Cement Blocks with the Incorporation of Limestone Residues from the Processing of Marble. Materials Research, 2018, 21, .                                                                               | 0.6 | 41        |
| 29 | Evaluation of roughcast on the adhesion mechanisms of mortars on ceramic substrates. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.                                                                     | 1.3 | 39        |
| 30 | Correlation between the properties of structural clay blocks obtained by destructive tests and<br>Ultrasonic Pulse Tests. Journal of Building Engineering, 2019, 26, 100869.                                               | 1.6 | 35        |
| 31 | Durability of coating mortars containing açaÃ-fibers. Case Studies in Construction Materials, 2020, 13, e00406.                                                                                                            | 0.8 | 35        |
| 32 | The Influence of COVID-19-Induced Daily Activities on Health Parameters—A Case Study in Malaysia.<br>Sustainability, 2021, 13, 7465.                                                                                       | 1.6 | 34        |
| 33 | Mechanical, physical and durability properties of activated alkali cement based on blast furnace slag<br>as a function of %Na2O. Case Studies in Construction Materials, 2021, 15, e00723.                                 | 0.8 | 32        |
| 34 | Use of natural vegetable fibers in cementitious composites: concepts and applications. Innovative Infrastructure Solutions, 2021, 6, 1.                                                                                    | 1.1 | 31        |
| 35 | Effect of the addition and processing of glass polishing waste on the durability of geopolymeric mortars. Case Studies in Construction Materials, 2021, 15, e00662.                                                        | 0.8 | 31        |
| 36 | Verification of the application potential of the mathematical models of lyse, abrams and molinari in mortars based on cement and lime. Journal of Materials Research and Technology, 2020, 9, 7327-7334.                   | 2.6 | 29        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Recycling potential of powdered cigarette waste in the development of ceramic materials. Journal of<br>Material Cycles and Waste Management, 2020, 22, 1672-1681.                                      | 1.6 | 29        |
| 38 | Potential of Using Amazon Natural Fibers to Reinforce Cementitious Composites: A Review. Polymers, 2022, 14, 647.                                                                                      | 2.0 | 26        |
| 39 | A Review of the Use of Natural Fibers in Cement Composites: Concepts, Applications and Brazilian<br>History. Polymers, 2022, 14, 2043.                                                                 | 2.0 | 25        |
| 40 | Durability of geopolymers with industrial waste. Case Studies in Construction Materials, 2022, 16, e00839.                                                                                             | 0.8 | 20        |
| 41 | Evaluation of the application of macrophyte biomass Salvinia auriculata Aublet in red ceramics.<br>Journal of Environmental Management, 2020, 275, 111253.                                             | 3.8 | 18        |
| 42 | Economic potential comparative of reusing different industrial solid wastes in cementitious<br>composites: a case study in Brazil. Environment, Development and Sustainability, 2022, 24, 5938-5961.   | 2.7 | 15        |
| 43 | Validation of alternative methodologies by using capillarity in the determination of porosity parameters of cement-lime mortars. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.     | 1.3 | 13        |
| 44 | Technological Characterization of PET—Polyethylene Terephthalate—Added Soil-Cement Bricks.<br>Materials, 2021, 14, 5035.                                                                               | 1.3 | 12        |
| 45 | Recycled PET Sand for Cementitious Mortar. Materials, 2022, 15, 273.                                                                                                                                   | 1.3 | 12        |
| 46 | Life cycle approach applied to the production of ceramic materials incorporated with ornamental stone wastes. Environmental Science and Pollution Research, 2022, 29, 9957-9970.                       | 2.7 | 10        |
| 47 | Influence of high temperatures on physical properties and microstructure of gneiss. Bulletin of Engineering Geology and the Environment, 2021, 80, 7069-7081.                                          | 1.6 | 9         |
| 48 | Experimental and analytical investigation on the confinement behavior of low strength concrete under axial compression. Structures, 2022, 36, 303-313.                                                 | 1.7 | 9         |
| 49 | Effect of the addition of the natural and treated açaÃ-stone in structural mortars. AIMS Materials<br>Science, 2021, 8, 608-621.                                                                       | 0.7 | 8         |
| 50 | Study of the Compressive Strength of Mortars as a Function of Material Composition, Workability, and Specimen Geometry. Modelling and Simulation in Engineering, 2020, 2020, 1-6.                      | 0.4 | 7         |
| 51 | Economy analysis of the implementation of extruded tiles fabrication in a ceramic industry containing ornamental rock waste. International Journal of Applied Ceramic Technology, 2021, 18, 1876-1890. | 1.1 | 7         |
| 52 | Perspective of the application of ash from the ceramic industry in the development of alkali-activated roof tiles. Ceramics International, 2022, 48, 6250-6257.                                        | 2.3 | 7         |
| 53 | Recycling of waste glass extracted from a WTP into ceramic materials. Journal of Material Cycles and Waste Management, 2022, 24, 763-774.                                                              | 1.6 | 7         |
| 54 | Study on the implementation of reverse logistics in medicines from health centers in Brazil. , 2022, 2, 100015.                                                                                        |     | 6         |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Influence of processing parameters variation on the development of geopolymeric ceramic blocks with calcined kaolinite clay. Case Studies in Construction Materials, 2022, 16, e00897.    | 0.8 | 5         |
| 56 | Reuse of wastes from the production of electrofused alumina in red ceramics. Environment, Development and Sustainability, 2023, 25, 669-685.                                              | 2.7 | 4         |
| 57 | Mortars with Pineapple Fibers for Use in Structural Reinforcement. Minerals, Metals and Materials Series, 2019, , 721-728.                                                                | 0.3 | 3         |
| 58 | Analysis of deformability modulus by linear and nonlinear elastic methods in ceramic structural masonry and mortars. Ceramica, 2020, 66, 229-235.                                         | 0.3 | 3         |
| 59 | Study of the Incorporation of Waste from the Paper Industry in Ceramic Tiles. Minerals, Metals and Materials Series, 2019, , 257-264.                                                     | 0.3 | 2         |
| 60 | Effect of the Incorporation of Marble Waste in the Properties of Clay Ceramic Bricks. Materials<br>Science Forum, 2020, 1012, 250-255.                                                    | 0.3 | 2         |
| 61 | Proposal of Dosing of Mortars Using Simplex Network. Minerals, Metals and Materials Series, 2019, ,<br>747-756.                                                                           | 0.3 | 1         |
| 62 | Evaluation of the Incorporation of Marble and Granite Residue in Coating Mortars. Minerals, Metals and Materials Series, 2020, , 101-108.                                                 | 0.3 | 1         |
| 63 | Characterization of Clay Mix with Incorporation of Granite Waste for the Production of Ceramic<br>Tiles. Minerals, Metals and Materials Series, 2020, , 469-475.                          | 0.3 | 1         |
| 64 | Capillary Absorption Evaluation of Different Mortars Applied in Civil Construction. Minerals, Metals and Materials Series, 2020, , 555-561.                                               | 0.3 | 1         |
| 65 | A Study of the Load Stages by the Displacement of Mortars Composed of Ornamental Stone Residues by<br>the Method of Squeeze Flow. Minerals, Metals and Materials Series, 2019, , 435-440. | 0.3 | 0         |
| 66 | Evaluation of Technological Properties of Soil-Cement Blocks Using Experimental Design of Mixtures.<br>Minerals, Metals and Materials Series, 2019, , 647-655.                            | 0.3 | 0         |
| 67 | Influence of Construction and Demolition Waste Incorporation in Concrete. Minerals, Metals and Materials Series, 2020, , 109-117.                                                         | 0.3 | 0         |
| 68 | Technical, Environmental, and Economic Advantages in the Use of Asphalt Rubber. Minerals, Metals<br>and Materials Series, 2021, , 577-586.                                                | 0.3 | 0         |
| 69 | Adhesion Study at Advanced Ages in Multipurpose Mortars. Minerals, Metals and Materials Series, 2018, , 429-435.                                                                          | 0.3 | 0         |
| 70 | Study of Durability of Mortars with Effluent Sludge from Paper Industry Exposed to Salt Spray.<br>Minerals, Metals and Materials Series, 2018, , 669-676.                                 | 0.3 | 0         |
| 71 | EFEITO DA ADIÇÃ $f$ O DE RESÃĐUO DE GRANITO NA REOLOGIA DA ARGAMASSA. , 0, , .                                                                                                            |     | 0         |
| 72 | Influence of Sealing Mortar in the Strength of Compression of the Structural Masonry Ceramic.<br>Minerals, Metals and Materials Series, 2020, , 591-598.                                  | 0.3 | 0         |

0

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Analysis of the Effect of Marine Salinity in Durability of Red Ceramics Calcinated in Different<br>Temperature. Minerals, Metals and Materials Series, 2020, , 419-427. | 0.3 | 0         |

Use of agro-industrial waste as a filler for structural reinforcement mortars. , 2022, , 67-78.

6