Vincent Timmerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3430641/publications.pdf

Version: 2024-02-01

188 papers 16,439 citations

64 h-index 17546 121 g-index

194 all docs

194 docs citations

194 times ranked 15625 citing authors

#	Article	IF	CITATIONS
1	Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genetics, 2004, 36, 449-451.	9.4	1,391
2	The hnRNP family: insights into their role in health and disease. Human Genetics, 2016, 135, 851-867.	1.8	720
3	DNA/RNA Helicase Gene Mutations in a Form of Juvenile Amyotrophic Lateral Sclerosis (ALS4). American Journal of Human Genetics, 2004, 74, 1128-1135.	2.6	717
4	Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nature Genetics, 2004, 36, 602-606.	9.4	541
5	Mutations in the Small GTP-ase Late Endosomal Protein RAB7 Cause Charcot-Marie-Tooth Type 2B Neuropathy. American Journal of Human Genetics, 2003, 72, 722-727.	2.6	415
6	HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1–induced Charcot-Marie-Tooth disease. Nature Medicine, 2011, 17, 968-974.	15.2	405
7	The peripheral myelin protein gene PMP–22 is contained within the Charcot–Marie–Tooth disease type 1A duplication. Nature Genetics, 1992, 1, 171-175.	9.4	404
8	Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nature Genetics, 2004, 36, 597-601.	9.4	395
9	Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Annals of Neurology, 2006, 59, 276-281.	2.8	380
10	MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2. Brain, 2006, 129, 2093-2102.	3.7	351
11	Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nature Genetics, 2004, 36, 271-276.	9.4	349
12	Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nature Genetics, 2005, 37, 289-294.	9.4	324
13	Disrupted function and axonal distribution of mutant tyrosyl-tRNA synthetase in dominant intermediate Charcot-Marie-Tooth neuropathy. Nature Genetics, 2006, 38, 197-202.	9.4	323
14	A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nature Genetics, 2013, 45, 1399-1404.	9.4	264
15	Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain, 2003, 126, 590-597.	3.7	259
16	Mutations in SEPT9 cause hereditary neuralgic amyotrophy. Nature Genetics, 2005, 37, 1044-1046.	9.4	222
17	Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nature Genetics, 2009, 41, 1179-1181.	9.4	205
18	Genetics of Charcot-Marie-Tooth (CMT) Disease within the Frame of the Human Genome Project Success. Genes, 2014, 5, 13-32.	1.0	203

#	Article	IF	Citations
19	Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation. Brain, 2009, 132, 2699-2711.	3.7	202
20	Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14825-14830.	3.3	193
21	Further evidence that neurofilament light chain gene mutations can cause Charcot-Marie-Tooth disease type 2E. Annals of Neurology, 2001, 49, 245-249.	2.8	188
22	Mutations in a Gene Encoding a Novel SH3/TPR Domain Protein Cause Autosomal Recessive Charcot-Marie-Tooth Type 4C Neuropathy. American Journal of Human Genetics, 2003, 73, 1106-1119.	2.6	185
23	KIF1A, an Axonal Transporter of Synaptic Vesicles, Is Mutated in Hereditary Sensory and Autonomic Neuropathy Type 2. American Journal of Human Genetics, 2011, 89, 219-230.	2.6	172
24	Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathologica, 2016, 131, 505-523.	3.9	172
25	Missense Mutations in the Copper Transporter Gene ATP7A Cause X-Linked Distal Hereditary Motor Neuropathy. American Journal of Human Genetics, 2010, 86, 343-352.	2.6	170
26	Mutations in the SPTLC2 Subunit of Serine Palmitoyltransferase Cause Hereditary Sensory and Autonomic Neuropathy Type I. American Journal of Human Genetics, 2010, 87, 513-522.	2.6	159
27	Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nature Neuroscience, 2020, 23, 676-689.	7.1	148
28	The phenotype of motor neuropathies associated with BSCL2 mutations is broader than Silver syndrome and distal HMN type V. Brain, 2004, 127, 2124-2130.	3.7	146
29	Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nature Reviews Neurology, 2012, 8, 73-85.	4.9	140
30	Mutational analysis of the MPZ, PMP22 and Cx32 genes in patients of Spanish ancestry with Charcot-Marie-Tooth disease and hereditary neuropathy with liability to pressure palsies. Human Genetics, 1997, 99, 746-754.	1.8	137
31	Charcotâ€Marieâ€Tooth Disease: A Clinicoâ€genetic Confrontation. Annals of Human Genetics, 2008, 72, 416-441.	0.3	136
32	Phenotypic spectrum of dynamin 2 mutations in Charcot-Marie-Tooth neuropathy. Brain, 2009, 132, 1741-1752.	3.7	134
33	Acute injury in the peripheral nervous system triggers an alternative macrophage response. Journal of Neuroinflammation, 2012, 9, 176.	3.1	134
34	Peripheral Nerve Demyelination Caused by a Mutant Rho GTPase Guanine Nucleotide Exchange Factor, Frabin/FGD4. American Journal of Human Genetics, 2007, 81, 158-164.	2.6	128
35	Mechanisms for Nonrecurrent Genomic Rearrangements Associated with CMT1A or HNPP: Rare CNVs as a Cause for Missing Heritability. American Journal of Human Genetics, 2010, 86, 892-903.	2.6	125
36	Estimation of the size of the chromosome 17p11.2 duplication in Charcot-Marie-Tooth neuropathy type la (CMT1a). HMSN Collaborative Research Group Journal of Medical Genetics, 1992, 29, 5-11.	1.5	123

#	Article	IF	CITATIONS
37	Tollâ€like receptor expression in the peripheral nerve. Glia, 2010, 58, 1701-1709.	2.5	121
38	Relative contribution of mutations in genes for autosomal dominant distal hereditary motor neuropathies: a genotype-phenotype correlation study. Brain, 2007, 131, 1217-1227.	3.7	113
39	Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain, 2010, 133, 1798-1809.	3.7	113
40	Genetic spectrum of hereditary neuropathies with onset in the first year of life. Brain, 2011, 134, 2664-2676.	3.7	112
41	Molecular Defects in the Motor Adaptor BICD2 Cause Proximal Spinal Muscular Atrophy with Autosomal-Dominant Inheritance. American Journal of Human Genetics, 2013, 92, 955-964.	2.6	112
42	Rapid screening of myelin genes in CMT1 patients by SSCP analysis: identification of new mutations and polymorphisms in the PO gene. Human Genetics, 1994, 94, 653-657.	1.8	110
43	Slowed Conduction and Thin Myelination of Peripheral Nerves Associated with Mutant Rho Guanine-Nucleotide Exchange Factor 10. American Journal of Human Genetics, 2003, 73, 926-932.	2.6	107
44	Periaxin mutations cause a broad spectrum of demyelinating neuropathies. Annals of Neurology, 2002, 51, 709-715.	2.8	106
45	Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia. Nature Genetics, 2012, 44, 1080-1083.	9.4	102
46	The neuroinflammatory role of Schwann cells in disease. Neurobiology of Disease, 2013, 55, 95-103.	2.1	97
47	Dominant mutations in the tyrosyl-tRNA synthetase gene recapitulate in ⟨i⟩Drosophila⟨ i⟩ features of human Charcot–Marie–Tooth neuropathy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11782-11787.	3.3	96
48	Recessive mutations in <i>SLC13A5</i> result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia. Brain, 2015, 138, 3238-3250.	3.7	96
49	Increased Monomerization of Mutant HSPB1 Leads to Protein Hyperactivity in Charcot-Marie-Tooth Neuropathy. Journal of Biological Chemistry, 2010, 285, 12778-12786.	1.6	95
50	Small Heat-Shock Protein HSPB1 Mutants Stabilize Microtubules in Charcot-Marie-Tooth Neuropathy. Journal of Neuroscience, 2011, 31, 15320-15328.	1.7	95
51	2nd Workshop of the European CMT Consortium: 53rd ENMC International Workshop on Classification and Diagnostic Guidelines for Charcot-Marie-Tooth Type 2 (CMT2–HMSN II) and Distal Hereditary Motor Neuropathy (Distal HMN–Spinal CMT). Neuromuscular Disorders, 1998, 8, 426-431.	0.3	89
52	Mutant HSPB8 causes motor neuron-specific neurite degeneration. Human Molecular Genetics, 2010, 19, 3254-3265.	1.4	83
53	Exome Sequencing Identifies a REEP1 Mutation Involved in Distal Hereditary Motor Neuropathy Type V. American Journal of Human Genetics, 2012, 91, 139-145.	2.6	83
54	Sensory neuropathy with bone destruction due to a mutation in the membrane-shaping atlastin GTPase 3. Brain, 2014, 137, 683-692.	3.7	80

#	Article	IF	CITATIONS
55	Screening for mutations in the peripheral myelin genesPMP22,MPZ andCx32 (GJB1) in Russian Charcot-Marie-Tooth neuropathy patients. Human Mutation, 2000, 15, 340-347.	1.1	78
56	Clinicopathological and genetic study of early-onset demyelinating neuropathy. Brain, 2004, 127, 2540-2550.	3.7	76
57	Charcotâ€Marieâ€Tooth Neuropathy Type 2 and P0 Point Mutations: Two Novel Amino Acid Substitutions (Asp61Gly; Tyr119Cys) and a Possible "Hotspot―on Thr124Met. Brain Pathology, 2000, 10, 235-248.	2.1	74
58	Autosomal dominant juvenile amyotrophic lateral sclerosis and distal hereditary motor neuronopathy with pyramidal tract signs: synonyms for the same disorder?. Brain, 2002, 125, 1320-1325.	3.7	74
59	Autosomal Dominant Inherited Neuropathies With Prominent Sensory Loss and Mutilations. Archives of Neurology, 2003, 60, 329.	4.9	74
60	Altered interplay between endoplasmic reticulum and mitochondria in Charcot–Marie–Tooth type 2A neuropathy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2328-2337.	3.3	73
61	Molecular genetics of distal hereditary motor neuropathies. Human Molecular Genetics, 2004, 13, R195-R202.	1.4	71
62	Juvenile open angle glaucoma: fine mapping of the TIGR gene to 1q24.3-q25.2 and mutation analysis. Human Genetics, 1998, 102, 103-106.	1.8	67
63	SIMPLE mutation in demyelinating neuropathy and distribution in sciatic nerve. Annals of Neurology, 2004, 55, 713-720.	2.8	67
64	Distal hereditary motor neuropathy type II (distal HMN II): mapping of a locus to chromosome 12q24. Human Molecular Genetics, 1996, 5, 1065-1069.	1.4	66
65	A new locus for autosomal dominant Charcot-Marie-Tooth disease type 2 (CMT2F) maps to chromosome 7q11-q21. European Journal of Human Genetics, 2001, 9, 646-650.	1.4	66
66	Overlapping molecular pathological themes link Charcot–Marie–Tooth neuropathies and hereditary spastic paraplegias. Experimental Neurology, 2013, 246, 14-25.	2.0	64
67	Challenges in modelling the Charcot-Marie-Tooth neuropathies for therapy development. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 58-67.	0.9	61
68	Identification of a 5' splice site mutation in the PMP-22 gene in autosomal dominant Charcotâ€"Marieâ€" Tooth disease type 1. Human Molecular Genetics, 1994, 3, 515-516.	1.4	60
69	Localization of the Gene for the Intermediate Form of Charcot-Marie-Tooth to Chromosome 10q24.1-q25.1. American Journal of Human Genetics, 2001, 69, 889-894.	2.6	60
70	Recent advances in Charcot–Marie–Tooth disease. Current Opinion in Neurology, 2014, 27, 532-540.	1.8	60
71	Dominant Intermediate Charcot-Marie-Tooth Type C Maps to Chromosome 1p34-p35. American Journal of Human Genetics, 2003, 73, 1423-1430.	2.6	58
72	A knock-in/knock-out mouse model of HSPB8-associated distal hereditary motor neuropathy and myopathy reveals toxic gain-of-function of mutant Hspb8. Acta Neuropathologica, 2018, 135, 131-148.	3.9	58

#	Article	IF	Citations
73	Unraveling the genetics of distal hereditary motor neuronopathies. NeuroMolecular Medicine, 2006, 8, 131-146.	1.8	57
74	Small heat shock proteins in neurodegenerative diseases. Cell Stress and Chaperones, 2020, 25, 679-699.	1.2	57
75	Recent advances in hereditary sensory and autonomic neuropathies. Current Opinion in Neurology, 2006, 19, 474-480.	1.8	56
76	Neuropathy-causing mutations in HSPB1 impair autophagy by disturbing the formation of SQSTM1/p62 bodies. Autophagy, 2019, 15, 1051-1068.	4.3	56
77	Axonal Neuropathies due to Mutations in Small Heat Shock Proteins: Clinical, Genetic, and Functional Insights into Novel Mutations. Human Mutation, 2017, 38, 556-568.	1.1	54
78	Mutation Scanning the GJB1 Gene with High-Resolution Melting Analysis: Implications for Mutation Scanning of Genes for Charcot-Marie-Tooth Disease. Clinical Chemistry, 2007, 53, 349-352.	1.5	53
79	Detection of the CMT1A/HNPP recombination hotspot in unrelated patients of European descent Journal of Medical Genetics, 1997, 34, 43-49.	1.5	52
80	Hereditary sensory neuropathy is caused by a mutation in the delta subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct4) gene. Human Molecular Genetics, 2003, 12, 1917-1925.	1.4	51
81	Whole-exome sequencing in patients with inherited neuropathies: outcome and challenges. Journal of Neurology, 2014, 261, 970-982.	1.8	50
82	Identification of novel GDAP1 mutations causing autosomal recessive Charcot-Marie-Tooth disease. Neuromuscular Disorders, 2003, 13, 720-728.	0.3	49
83	Small heat shock proteins in inherited peripheral neuropathies. Annals of Medicine, 2005, 37, 413-422.	1.5	49
84	Genetic variant in the HSPB1 promoter region impairs the HSP27 stress response. Human Mutation, 2007, 28, 830-830.	1.1	47
85	Refinement of the hereditary neuralgic amyotrophy (HNA) locus to chromosome 17q24-q25. Human Genetics, 1997, 99, 685-687.	1.8	46
86	Molecular Chaperones in the Pathogenesis of Amyotrophic Lateral Sclerosis: The Role of HSPB1. Human Mutation, 2016, 37, 1202-1208.	1.1	45
87	Charcot–Marie–Tooth causing HSPB1 mutations increase Cdk5-mediated phosphorylation of neurofilaments. Acta Neuropathologica, 2013, 126, 93-108.	3.9	43
88	Nlrp6 promotes recovery after peripheral nerve injury independently of inflammasomes. Journal of Neuroinflammation, 2015, 12, 143.	3.1	42
89	Linkage analysis of distal hereditary motor neuropathy type II (distal HMN II) in a single pedigree. Journal of the Neurological Sciences, 1992, 109, 41-48.	0.3	41
90	Biallelic VARS variants cause developmental encephalopathy with microcephaly that is recapitulated in vars knockout zebrafish. Nature Communications, 2019, 10, 708.	5.8	40

#	Article	IF	Citations
91	Experimental Charcot–Marie–Tooth type 1A: A cDNA microarrays analysis. Molecular and Cellular Neurosciences, 2005, 28, 703-714.	1.0	39
92	Neurofilament phosphorylation and their prolineâ€directed kinases in health and disease. Journal of the Peripheral Nervous System, 2012, 17, 365-376.	1.4	38
93	Clinical and Electrophysiological Features in Charcot-Marie-Tooth Disease With Mutations in the NEFL Gene. Archives of Neurology, 2007, 64, 966.	4.9	37
94	Characterization of two mutations in the SPTLC1 subunit of serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathy type I. Human Mutation, 2011, 32, E2211-E2225.	1.1	37
95	A novel homozygous missense mutation in the myotubularin-related protein 2 gene associated with recessive Charcot–Marie–Tooth disease with irregularly folded myelin sheaths. Neuromuscular Disorders, 2002, 12, 869-873.	0.3	36
96	Novel Mutations in the DYNC1H1 Tail Domain Refine the Genetic and Clinical Spectrum of Dyneinopathies. Human Mutation, 2015, 36, 287-291.	1.1	36
97	Disease mechanisms in hereditary sensory and autonomic neuropathies. Neurobiology of Disease, 2006, 21, 247-255.	2.1	35
98	Magnetic resonance imaging findings of leg musculature in Charcot-Marie-Tooth disease type 2 due to dynamin 2 mutation. Journal of Neurology, 2008, 255, 986-992.	1.8	35
99	Autosomal-Dominant Striatal Degeneration Is Caused by a Mutation in the Phosphodiesterase 8B Gene. American Journal of Human Genetics, 2010, 86, 83-87.	2.6	35
100	Mutations at Ser331 in the HSN type I gene SPTLC1 are associated with a distinct syndromic phenotype. European Journal of Medical Genetics, 2013, 56, 266-269.	0.7	35
101	Genetic refinement of the hereditary neuralgic amyotrophy (HNA) locus at chromosome 17q25. European Journal of Human Genetics, 1999, 7, 920-927.	1.4	34
102	Molecular genetics and biology of inherited peripheral neuropathies: a fast-moving field. Neurogenetics, 1999, 2, 137-148.	0.7	34
103	CMT-associated mutations in glycyl- and tyrosyl-tRNA synthetases exhibit similar pattern of toxicity and share common genetic modifiers in Drosophila. Neurobiology of Disease, 2014, 68, 180-189.	2.1	34
104	HSPB1 facilitates ERK-mediated phosphorylation and degradation of BIM to attenuate endoplasmic reticulum stress-induced apoptosis. Cell Death and Disease, 2017, 8, e3026-e3026.	2.7	33
105	Mutation analysis of the connexin 32 (Cx32) gene in charcot-marie-tooth neuropathy type 1: Identification of five new mutations., 1997, 9, 47-52.		32
106	Microtubule dynamics in the peripheral nervous system. Bioarchitecture, 2011, 1, 267-270.	1.5	32
107	Novel insights in the disease biology of mutant small heat shock proteins in neuromuscular diseases. Brain, 2017, 140, 2541-2549.	3.7	32
108	BAG3 Pro209 mutants associated with myopathy and neuropathy relocate chaperones of the CASA-complex to aggresomes. Scientific Reports, 2020, 10, 8755.	1.6	32

#	Article	IF	Citations
109	Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies. Frontiers in Molecular Neuroscience, 2017, 10, 143.	1.4	31
110	Sensory neuropathy-causing mutations in ATL3 affect ER–mitochondria contact sites and impair axonal mitochondrial distribution. Human Molecular Genetics, 2019, 28, 615-627.	1.4	31
111	Linkage and mutation analysis in an extended family with Charcot-Marie-Tooth disease type 1B Journal of Medical Genetics, 1994, 31, 811-815.	1.5	30
112	Diagnostic guidelines for hereditary neuralgic amyotrophy or heredofamilial neuritis with brachial plexus predilection. Neuromuscular Disorders, 2000, 10, 515-517.	0.3	30
113	Novel frameshift and splice site mutations in the neurotrophic tyrosine kinase receptor type 1 gene (NTRK1) associated with hereditary sensory neuropathy type IV. Neuromuscular Disorders, 2006, 16, 19-25.	0.3	30
114	Mutant HSPB8 causes protein aggregates and a reduced mitochondrial membrane potential in dermal fibroblasts from distal hereditary motor neuropathy patients. Neuromuscular Disorders, 2012, 22, 699-711.	0.3	30
115	Animal models and therapeutic prospects for Charcot–Marie–Tooth disease. Annals of Neurology, 2013, 74, 391-396.	2.8	30
116	Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8+ T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity, 2019, 50, 1218-1231.e5.	6.6	30
117	Molecular genetic analysis of the 17p11.2 region in patients with hereditary neuropathy with liability to pressure palsies (HNPP). Human Genetics, 1996, 97, 26-34.	1.8	29
118	Genotype–phenotype analysis in patients with giant axonal neuropathy (GAN). Neuromuscular Disorders, 2007, 17, 624-630.	0.3	29
119	Unraveling the genetic landscape of autosomal recessive Charcot-Marie-Tooth neuropathies using a homozygosity mapping approach. Neurogenetics, 2015, 16, 33-42.	0.7	29
120	Mutant HSPB1 causes loss of translational repression by binding to PCBP1, an RNA binding protein with a possible role in neurodegenerative disease. Acta Neuropathologica Communications, 2017, 5, 5.	2.4	29
121	Sensory-Neuropathy-Causing Mutations in ATL3 Cause Aberrant ER Membrane Tethering. Cell Reports, 2018, 23, 2026-2038.	2.9	29
122	Human Rab7 mutation mimics features of Charcot–Marie–Tooth neuropathy type 2B in Drosophila. Neurobiology of Disease, 2014, 65, 211-219.	2.1	28
123	Microglial derived extracellular vesicles activate autophagy and mediate multiâ€ŧarget signaling to maintain cellular homeostasis. Journal of Extracellular Vesicles, 2020, 10, e12022.	5.5	28
124	A novel $3\hat{a}\in^2$ -splice site mutation in peripheral myelin protein 22 causing hereditary neuropathy with liability to pressure palsies. Neuromuscular Disorders, 2001, 11, 400-403.	0.3	27
125	Autosomal dominant axonal Charcot-Marie-Tooth disease type 2 (CMT2G) maps to chromosome 12q12-q13.3. Journal of Medical Genetics, 2004, 41, 193-197.	1.5	27
126	Induced pluripotent stem cell-derived motor neurons of CMT type 2 patients reveal progressive mitochondrial dysfunction. Brain, 2021, 144, 2471-2485.	3.7	27

#	Article	IF	Citations
127	Charcot-Marie-Tooth disease: an intermediate form. Neuromuscular Disorders, 1998, 8, 392-393.	0.3	26
128	Hereditary Neuralgic Amyotrophy (HNA) is genetically heterogeneous. Journal of Neurology, 2001, 248, 861-865.	1.8	26
129	A systematic comparison of all mutations in hereditary sensory neuropathy type I (HSAN I) reveals that the G387A mutation is not disease associated. Neurogenetics, 2009, 10, 135-143.	0.7	26
130	Reduced penetrance in hereditary motor neuropathy caused by TRPV4 Arg269Cys mutation. Journal of Neurology, 2011, 258, 1413-1421.	1.8	24
131	Exclusion of serine palmitoyltransferase long chain base subunit 2 (SPTLC2) as a common cause for hereditary sensory neuropathy. Neuromuscular Disorders, 2002, 12, 656-658.	0.3	23
132	Humoral immunodeficiency in congenital insensitivity to pain with anhidrosis. Neurogenetics, 2009, 10, 161-165.	0.7	23
133	Defects in Axonal Transport in Inherited Neuropathies. Journal of Neuromuscular Diseases, 2019, 6, 401-419.	1.1	23
134	PMP22 Thr118Met is not a clinically relevant CMT1 marker. Journal of Neurology, 2000, 247, 696-700.	1.8	22
135	Unraveling the Genetics of Distal Hereditary Motor Neuronopathies. NeuroMolecular Medicine, 0, 8, 131-146.	1.8	21
136	A de novo duplication in 17p11.2 and a novel mutation in the Po gene in two Déjérine—Sottas syndrome patients. , 1996, 8, 304-310.		20
137	Genetics of motor neuron disease. Current Neurology and Neuroscience Reports, 2006, 6, 423-431.	2.0	20
138	Fine mapping of the neurally expressed gene SOX14 to human 3q23, relative to three congenital diseases. Human Genetics, 2000, 106, 432-439.	1.8	19
139	Genetic pain loss disorders. Nature Reviews Disease Primers, 2022, 8, .	18.1	18
140	Absence of mutations in peripheral myelin protein-22, myelin protein zero, and connexin 32 in autosomal recessive Dejerine-Sottas syndrome. Neuroscience Letters, 1998, 240, 1-4.	1.0	17
141	A Novel Type of Hereditary Motor and Sensory Neuropathy Characterized by a Mild Phenotype. Archives of Neurology, 1999, 56, 1283.	4.9	16
142	PFN2 and GAMT as common molecular determinants of axonal Charcot-Marie-Tooth disease. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 870-878.	0.9	16
143	A Sequence-Ready BAC/PAC Contig and Partial Transcript Map of Approximately 1.5 Mb in Human Chromosome 17q25 Comprising Multiple Disease Genes. Genomics, 1999, 62, 242-250.	1.3	15
144	L239F founder mutation in GDAP1 is associated with a mild Charcot–Marie–Tooth type 4C4 (CMT4C4) phenotype. Neurogenetics, 2010, 11, 357-366.	0.7	15

#	Article	IF	Citations
145	Report of a novel ATP7A mutation causing distal motor neuropathy. Neuromuscular Disorders, 2019, 29, 776-785.	0.3	15
146	A weakened interface in the P182L variant of HSP27 associated with severe Charcotâ€Marieâ€Tooth neuropathy causes aberrant binding to interacting proteins. EMBO Journal, 2021, 40, e103811.	3.5	14
147	HSPB1 Facilitates the Formation of Non-Centrosomal Microtubules. PLoS ONE, 2013, 8, e66541.	1.1	14
148	Mutation analysis of 4 candidate genes for hereditary neuralgic amyotrophy (HNA). Human Genetics, 2001, 108, 390-393.	1.8	13
149	Charcot–Marie–Tooth disease type 2G redefined by a novel mutation in <i>LRSAM1</i> . Annals of Neurology, 2016, 80, 823-833.	2.8	13
150	NCAM1 and GDF15 are biomarkers of Charcot-Marie-Tooth disease in patients and mice. Brain, 2022, 145, 3999-4015.	3.7	12
151	Of giant axons and curly hair. Nature Genetics, 2000, 26, 254-255.	9.4	11
152	A Clone Contig of 12q24.3 Encompassing the Distal Hereditary Motor Neuropathy Type II Gene. Genomics, 2000, 65, 34-43.	1.3	11
153	Hereditary neuralgic amyotrophy. Neurogenetics, 2001, 3, 115-118.	0.7	11
154	Peripheral neuropathy and 46XY gonadal dysgenesis: A heterogeneous entity. Neuromuscular Disorders, 2009, 19, 172-175.	0.3	11
155	Drosophila as a platform to predict the pathogenicity of novel aminoacyl-tRNA synthetase mutations in CMT. Amino Acids, 2012, 42, 1661-1668.	1.2	11
156	Oligodendroglia-derived extracellular vesicles activate autophagy via LC3B/BAG3 to protect against oxidative stress with an enhanced effect for HSPB8 enriched vesicles. Cell Communication and Signaling, 2022, 20, 58.	2.7	10
157	Search for mutations in the EGR2 corepressor proteins, NAB1 and NAB2, in human peripheral neuropathies. Neurogenetics, 2002, 4, 37-41.	0.7	9
158	N88S mutation in the BSCL2 gene in a Serbian family with distal hereditary motor neuropathy type V or Silver syndrome. Journal of the Neurological Sciences, 2010, 296, 107-109.	0.3	9
159	Characterization of New Transgenic Mouse Models for Two Charcot-Marie-Tooth-Causing HspB1 Mutations using the Rosa26 Locus. Journal of Neuromuscular Diseases, 2016, 3, 183-200.	1.1	9
160	De Novo and Dominantly Inherited <scp><i>SPTAN1</i></scp> Mutations Cause Spastic Paraplegia and Cerebellar Ataxia. Movement Disorders, 2022, 37, 1175-1186.	2,2	9
161	Cell Death–Mediated Cleavage of the Attraction Signal p43 in Human Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1415-1422.	1.1	8
162	Polymorphisms in the GluR2 gene are not associated with amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 418-420.	1.5	8

#	Article	IF	CITATIONS
163	Biopsy in a patient with PMP22 exon 2 mutation recapitulates pathology of Trembler-J mouse. Neuromuscular Disorders, 2013, 23, 345-348.	0.3	8
164	Mutation analysis of the human pancreatic phospholipase A2 gene in a family with distal hereditary motor neuropathy type II linked to 12q24. Neuroscience Letters, 1997, 223, 69-71.	1.0	6
165	Molecular genetics, biology, and therapy for inherited peripheral neuropathies. NeuroMolecular Medicine, 2006, 8, 1-2.	1.8	6
166	Spastin gene mutations in Bulgarian patients with hereditary spastic paraplegia. Clinical Genetics, 2006, 70, 490-495.	1.0	6
167	Promising riboflavin treatment for motor neuron disorder. Brain, 2014, 137, 2-3.	3.7	6
168	Mutation analysis of 12 candidate genes for distal hereditary motor neuropathy type II (distal HMN II) linked to 12q24.3. Journal of the Peripheral Nervous System, 2002, 7, 87-95.	1.4	5
169	Inherited peripheral neuropathies: a myriad of genes and complex phenotypes. Brain, 2011, 134, 1587-1590.	3.7	5
170	246th ENMC International Workshop: Protein aggregate myopathies 24–26 May 2019, Hoofddorp, The Netherlands. Neuromuscular Disorders, 2021, 31, 158-166.	0.3	5
171	Anti-steroid takes aim at neuropathy. Nature Medicine, 2003, 9, 1457-1458.	15.2	4
172	Andermann Syndrome in a Turkish Patient. Journal of Child Neurology, 2003, 18, 76-79.	0.7	4
173	Absence of mutations in the prion-protein gene in a large cohort of HMSN patients. Neuromuscular Disorders, 2005, 15, 549-551.	0.3	4
174	A "nerve" ending story in the identification of mutations in Charcot-Marie-Tooth neuropathy. Neurology, 2006, 67, 1114-1115.	1.5	4
175	Caspr1/Paranodin/Neurexin IV is most likely not a common disease-causing gene for inherited peripheral neuropathies. NeuroReport, 2001, 12, 2609-2614.	0.6	3
176	Synaptopodin and 4 novel genes identified in primary sensory neurons. Molecular and Cellular Neurosciences, 2005, 30, 316-325.	1.0	3
177	Increased axonal ribosome numbers in CMT diseases. Journal of the Peripheral Nervous System, 2011, 16, 71-73.	1.4	3
178	71st ENMC International Workshop, 6th Workshop of the European Charcot–Marie–Tooth Disease Consortium: Hereditary recurrent focal neuropathies, 24–25 September 1999, Soestduinen, The Netherlands. Neuromuscular Disorders, 2000, 10, 518-524.	0.3	2
179	Clinical utility gene card for: HMSN/HNPP HMSN types 1, 2, 3, 6 (CMT1,2,4, DSN, CHN, GAN, CCFDN, HNA); HNPP. European Journal of Human Genetics, 2010, 18, 1071-1071.	1.4	2
180	Genomic organization and mutation analysis of three candidate genes for hereditary neuralgic amyotrophy. Muscle and Nerve, 2004, 29, 601-604.	1.0	1

#	Article	lF	CITATIONS
181	G.O.1 In vitro expression of small heat shock protein HSPB8 and HSPB1 mutations causing axonal neuropathy. Neuromuscular Disorders, 2006, 16, 645-646.	0.3	1
182	The CMT1A Duplication., 2006,, 3-17.		1
183	The CMT1A Duplication and HNPP Deletion. , 2006, , 169-178.		1
184	Construction of a PAC Contig within the Distal Hereditary Motor Neuropathy Type II Candidate Region at 12q24. Annals of the New York Academy of Sciences, 1999, 883, 463-465.	1.8	0
185	A novel connexin 32 missense mutation (E208G) causing Charcot-Marie-Tooth disease. Human Mutation, 2001, 17, 157-157.	1.1	O
186	N.P.3 05 Mitofusin 2 mutations are a major cause for autosomal dominant axonal CMT neuropathy. Neuromuscular Disorders, 2006, 16, 665-666.	0.3	0
187	G.O.7 Distal myopathy with upper limb predominance caused by filamin C haploinsufficiency. Neuromuscular Disorders, 2012, 22, 874-875.	0.3	0
188	The CMT1A duplication. Medizinische Genetik, 2020, 32, 195-205.	0.1	0