Jeremy M Murray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3430557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature, 2017, 550, 534-538.	13.7	258
2	Optimized arylomycins are a new class of Gram-negative antibiotics. Nature, 2018, 561, 189-194.	13.7	244
3	Palmitoylation of TEAD Transcription Factors Is Required for Their Stability and Function in Hippo Pathway Signaling. Structure, 2016, 24, 179-186.	1.6	171
4	Diving into the Water: Inducible Binding Conformations for BRD4, TAF1(2), BRD9, and CECR2 Bromodomains. Journal of Medicinal Chemistry, 2016, 59, 5391-5402.	2.9	95
5	Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death. Cell Death and Differentiation, 2017, 24, 26-37.	5.0	95
6	Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of In Vitro Antiproliferation Activity and In Vivo Antitumor Efficacy. Journal of Medicinal Chemistry, 2021, 64, 2576-2607.	2.9	91
7	Molecular Understanding of USP7 Substrate Recognition and C-Terminal Activation. Structure, 2016, 24, 1335-1345.	1.6	67
8	Discovery of novel pyrazolo[1,5-a]pyrimidines as potent pan-Pim inhibitors by structure- and property-based drug design. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3149-3153.	1.0	55
9	Structural insights into lipoprotein N-acylation by <i>Escherichia coli</i> apolipoprotein N-acyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6044-E6053.	3.3	50
10	Structurally-defined deubiquitinase inhibitors provide opportunities to investigate disease mechanisms. Drug Discovery Today: Technologies, 2019, 31, 109-123.	4.0	40
11	Optimization of Pan-Pim Kinase Activity and Oral Bioavailability Leading to Diaminopyrazole (GDC-0339) for the Treatment of Multiple Myeloma. Journal of Medicinal Chemistry, 2019, 62, 2140-2153.	2.9	29
12	Inhibition of bromodomain-containing protein 9 for the prevention of epigenetically-defined drug resistance. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3534-3541.	1.0	28
13	Tailoring Small Molecules for an Allosteric Site on Procaspaseâ€6. ChemMedChem, 2014, 9, 73-77.	1.6	25
14	Discovery of 3,5-substituted 6-azaindazoles as potent pan-Pim inhibitors. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5258-5264.	1.0	20
15	Discovery of 5-Azaindazole (GNE-955) as a Potent Pan-Pim Inhibitor with Optimized Bioavailability. Journal of Medicinal Chemistry, 2017, 60, 4458-4473.	2.9	18
16	Inhibition of Escherichia coli Lipoprotein Diacylglyceryl Transferase Is Insensitive to Resistance Caused by Deletion of Braun's Lipoprotein. Journal of Bacteriology, 2021, 203, e0014921.	1.0	16
17	Unstable Mechanisms of Resistance to Inhibitors of Escherichia coli Lipoprotein Signal Peptidase. MBio, 2020, 11, .	1.8	15
18	Modulating caspase activity: beyond the active site. Current Opinion in Structural Biology, 2013, 23, 812-819.	2.6	14

#	Article	IF	CITATIONS
19	GNE-371, a Potent and Selective Chemical Probe for the Second Bromodomains of Human Transcription-Initiation-Factor TFIID Subunit 1 and Transcription-Initiation-Factor TFIID Subunit 1-like. Journal of Medicinal Chemistry, 2018, 61, 9301-9315.	2.9	11