
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3430201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Learned Immobility Produces Enduring Impairment of the HPA Axis Reactivity in Mice without Replicating the Broad Spectrum of Depressive-Like Phenotype. International Journal of Molecular Sciences, 2021, 22, 937.	1.8	3
2	Role of central serotonin and noradrenaline interactions in the antidepressants' action: Electrophysiological and neurochemical evidence. Progress in Brain Research, 2021, 259, 7-81.	0.9	5
3	Genetic and pharmacological inactivation of astroglial connexin 43 differentially influences the acute response of antidepressant and anxiolytic drugs. Acta Physiologica, 2020, 229, e13440.	1.8	24
4	Antidepressants: Molecular Aspects of SSRIs. , 2020, , 1-19.		1
5	Serotonin Neuronal Function from the Bed to the Bench: Is This Really a Mirrored Way?. ENeuro, 2019, 6, ENEURO.0021-19.2019.	0.9	0
6	Inducing a long-term potentiation in the dentate gyrus is sufficient to produce rapid antidepressant-like effects. Molecular Psychiatry, 2018, 23, 587-596.	4.1	19
7	The novel atypical antipsychotic cariprazine demonstrates dopamine D2receptorâ€dependent partial agonist actions on rat mesencephalic dopamine neuronal activity. CNS Neuroscience and Therapeutics, 2018, 24, 1129-1139.	1.9	10
8	Opposite control of mesocortical and mesoaccumbal dopamine pathways by serotonin2B receptor blockade: Involvement of medial prefrontal cortex serotonin1A receptors. Neuropharmacology, 2017, 119, 91-99.	2.0	17
9	Asenapine modulates moodâ€related behaviors and 5â€ <scp>HT</scp> _{1A/7} receptorsâ€mediated neurotransmission. CNS Neuroscience and Therapeutics, 2017, 23, 518-525.	1.9	10
10	Stress Models of Depression: A Question of Bad Timing. ENeuro, 2017, 4, ENEURO.0045-17.2017.	0.9	4
11	Protein Kinases Alter the Allosteric Modulation of the Serotonin Transporter <i>In Vivo</i> and <i>In Vitro</i> . CNS Neuroscience and Therapeutics, 2016, 22, 691-699.	1.9	4
12	The allosteric citalopram binding site differentially interferes with neuronal firing rate and SERT trafficking in serotonergic neurons. European Neuropsychopharmacology, 2016, 26, 1806-1817.	0.3	16
13	Task- and Treatment Length-Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 472-482.	1.3	20
14	Differential control of dopamine ascending pathways by serotonin2B receptor antagonists: New opportunities for the treatment of schizophrenia. Neuropharmacology, 2016, 109, 59-68.	2.0	18
15	The peptidic antidepressant spadin interacts with prefrontal 5-HT4 and mGluR2 receptors in the control of serotonergic function. Brain Structure and Function, 2016, 221, 21-37.	1.2	11
16	Deep Brain Stimulation for Depression: Is It a Gray or White "Matter�. Biological Psychiatry, 2016, 80, e43-e44.	0.7	2
17	A 5-HT3 receptor antagonist potentiates the behavioral, neurochemical and electrophysiological actions of an SSRI antidepressant. Pharmacology Biochemistry and Behavior, 2015, 131, 136-142.	1.3	27
18	Involvement of 5-HT7 receptors in vortioxetine's modulation of circadian rhythms and episodic memory in rodents. Neuropharmacology, 2015, 89, 382-390.	2.0	36

#	Article	IF	CITATIONS
19	Effect of the multimodal acting antidepressant vortioxetine on rat hippocampal plasticity and recognition memory. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 58, 38-46.	2.5	51
20	Astroglial Control of the Antidepressant-Like Effects of Prefrontal Cortex Deep Brain Stimulation. EBioMedicine, 2015, 2, 898-908.	2.7	48
21	Protein Kinase C Inhibition Rescues Manic-Like Behaviors and Hippocampal Cell Proliferation Deficits in the Sleep Deprivation Model of Mania. International Journal of Neuropsychopharmacology, 2015, 18,	1.0	37
22	The Role of Astroglia in the Antidepressant Action of Deep Brain Stimulation. Frontiers in Cellular Neuroscience, 2015, 9, 509.	1.8	8
23	Protein kinase C regulates mood-related behaviors and adult hippocampal cell proliferation in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 43, 40-48.	2.5	41
24	Lu AA21004, a novel multimodal antidepressant, produces regionally selective increases of multiple neurotransmitters—A rat microdialysis and electrophysiology study. European Neuropsychopharmacology, 2013, 23, 133-145.	0.3	139
25	The rapid recovery of 5-HT cell firing induced by the antidepressant vortioxetine involves 5-HT3 receptor antagonism. International Journal of Neuropsychopharmacology, 2013, 16, 1115-1127.	1.0	52
26	Astrocytes and Gliotransmitters: New Players in the Treatment of Major Depression?. Current Drug Targets, 2013, 14, 1295-1307.	1.0	14
27	Synergistic antidepressant-like action of gaboxadol and escitalopram. European Neuropsychopharmacology, 2012, 22, 751-760.	0.3	11
28	Escitalopram, an antidepressant with an allosteric effect at the serotonin transporter—a review of current understanding of its mechanism of action. Psychopharmacology, 2012, 219, 1-13.	1.5	81
29	Connection re-established: neurotransmission between the medial prefrontal cortex and serotonergic neurons offers perspectives for fast antidepressant action. Neuropsychiatry, 2011, 1, 165-177.	0.4	3
30	A Role for the PKC Signaling System in the Pathophysiology and Treatment of Mood Disorders: Involvement of a Functional Imbalance?. Molecular Neurobiology, 2011, 44, 407-419.	1.9	31
31	In vivo effects of pardoprunox (SLV308), a partial D ₂ /D ₃ receptor and 5â€HT _{1A} receptor agonist, on rat dopamine and serotonin neuronal activity. Synapse, 2011, 65, 1042-1051.	0.6	4
32	Role of 5-HT3 Receptors in the Antidepressant Response. Pharmaceuticals, 2011, 4, 603-629.	1.7	58
33	Pharmacological Blockade of 5-HT7 Receptors as a Putative Fast Acting Antidepressant Strategy. Neuropsychopharmacology, 2011, 36, 1275-1288.	2.8	117
34	Selective Serotonin Reuptake Inhibitors Potentiate the Rapid Antidepressant-Like Effects of Serotonin4 Receptor Agonists in the Rat. PLoS ONE, 2010, 5, e9253.	1.1	34
35	Effects of bifeprunox and aripiprazole on rat serotonin and dopamine neuronal activity and anxiolytic behaviour. Journal of Psychopharmacology, 2009, 23, 177-189.	2.0	31
36	F15063, a potential antipsychotic with dopamine D2/D3 receptor antagonist, 5-HT1A receptor agonist and dopamine D4 receptor partial agonist properties: Influence on neuronal firing and neurotransmitter release. European Journal of Pharmacology, 2009, 607, 74-83.	1.7	9

#	Article	IF	CITATIONS
37	Functional correlates for 5-HT1A receptors in maternally deprived rats displaying anxiety and depression-like behaviors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 262-268.	2.5	54
38	Bifeprunox and aripiprazole suppress in vivo VTA dopaminergic neuronal activity via D2 and not D3 dopamine autoreceptor activation. Neuroscience Letters, 2009, 460, 82-86.	1.0	14
39	Therapeutic Potential of 5-HT7 Receptors in Mood Disorders. Current Drug Targets, 2009, 10, 1109-1117.	1.0	32
40	Therapeutic Relevance of the Allosteric Modulation of the 5-HT Transporter. Current Signal Transduction Therapy, 2009, 4, 82-87.	0.3	4
41	Neurokinin-1 receptor antagonists modulate brain noradrenaline and serotonin interactions. European Journal of Pharmacology, 2008, 600, 64-70.	1.7	13
42	P.2.b.010 PKC blockade prevents the in vivo allosteric modulation of the 5-HT transporter induced by escitalopram. European Neuropsychopharmacology, 2008, 18, S318-S319.	0.3	0
43	Allosteric modulation of the effect of escitalopram, paroxetine and fluoxetine: in-vitro and in-vivo studies. International Journal of Neuropsychopharmacology, 2007, 10, 31.	1.0	58
44	R-citalopram prevents the neuronal adaptive changes induced by escitalopram. NeuroReport, 2007, 18, 1553-1556.	0.6	32
45	Serotonin4 (5-HT4) Receptor Agonists Are Putative Antidepressants with a Rapid Onset of Action. Neuron, 2007, 55, 712-725.	3.8	294
46	Effects of the serotonin 5-HT7 receptor antagonist SB-269970 on the inhibition of dopamine neuronal firing induced by amphetamine. European Journal of Pharmacology, 2007, 570, 72-76.	1.7	9
47	5-HT7 Receptor Antagonists as a New Class of Antidepressants. Drug News and Perspectives, 2007, 20, 613.	1.9	58
48	P.2.d.006 Serotonin 7 receptor antagonists as putative antidepressants with safer and faster onset of actions. European Neuropsychopharmacology, 2006, 16, S336.	0.3	1
49	Allosteric modulation of the effects of the 5-HT reuptake inhibitor escitalopram on the rat hippocampal synaptic plasticity. Neuroscience Letters, 2006, 395, 23-27.	1.0	43
50	Effects of the 5-HT7 receptor antagonist SB-269970 on rat hormonal and temperature responses to the 5-HT1A/7 receptor agonist 8-OH-DPAT. Neuroscience Letters, 2006, 404, 122-126.	1.0	47
51	Long-term adaptive changes induced by serotonergic antidepressant drugs. Expert Review of Neurotherapeutics, 2006, 6, 235-245.	1.4	35
52	GABAergic Network Activation of Glial Cells Underlies Hippocampal Heterosynaptic Depression. Journal of Neuroscience, 2006, 26, 5370-5382.	1.7	348
53	Effects of Acute and Long-Term Administration of Escitalopram and Citalopram on Serotonin Neurotransmission: an In Vivo Electrophysiological Study in Rat Brain. Neuropsychopharmacology, 2005, 30, 1269-1277.	2.8	176
54	Effects of the Potential Antidepressant OPC-14523 [1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-5-methoxy-3,4-dihydro-2-quinolinone Monomethanesulfonate] a Combined If and 5-HT1A Ligand: Modulation of Neuronal Activity in the Dorsal Raphe Nucleus. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 578-583.	1.3	18

#	Article	IF	CITATIONS
55	Electrophysiological Evidence for the Tonic Activation of 5-HT1A Autoreceptors in the Rat Dorsal Raphe Nucleus. Neuropsychopharmacology, 2004, 29, 1800-1806.	2.8	70
56	In-vivo modulation of central 5-hydroxytryptamine (5-HT1A) receptor-mediated responses by the cholinergic system. International Journal of Neuropsychopharmacology, 2004, 7, 391-399.	1.0	16
57	Impact of substance P receptor antagonism on the serotonin and norepinephrine systems: relevance to the antidepressant/anxiolytic response. Journal of Psychiatry and Neuroscience, 2004, 29, 208-18.	1.4	44
58	Sustained blockade of neurokinin-1 receptors enhances serotonin neurotransmission. Biological Psychiatry, 2001, 50, 191-199.	0.7	73
59	Enhancement of serotoninergic function ? a sometimes insufficient cause of antidepressant action. Human Psychopharmacology, 2001, 16, 23-27.	0.7	14
60	Effect of neurokinin-1 receptor antagonists on the function of 5-HT and noradrenaline neurons. NeuroReport, 2000, 11, 1323-1327.	0.6	51
61	Role of cholinergic and GABAergic systems in the feedback inhibition of dorsal raphe 5-HT neurons. NeuroReport, 2000, 11, 3397-3401.	0.6	23
62	Increased Tonic Activation of Rat Forebrain 5-HT1A Receptors by Lithium Addition to Antidepressant Treatments. Neuropsychopharmacology, 2000, 22, 346-356.	2.8	35
63	Effects of the co-administration of mirtazapine and paroxetine on serotonergic neurotransmission in the rat brain. European Neuropsychopharmacology, 2000, 10, 177-188.	0.3	68
64	Effect of sustained administration of the 5-HT1A receptor agonist flesinoxan on rat 5-HT neurotransmission. European Neuropsychopharmacology, 1999, 9, 427-440.	0.3	31
65	Modulation of the firing activity of rat serotonin and noradrenaline neurons by (±)pindolol. Biological Psychiatry, 1999, 45, 1163-1169.	0.7	31
66	Acute and long-term actions of the antidepressant drug mirtazapine on central 5-HT neurotransmission1These results have been reported in part in two publications (Haddjeri et al. 1996,) Tj ETQqO	00 2. ng/BT/	0v e7 lock 101
67	Effect of Ergotamine on Serotonin-Mediated Responses in the Rodent and Human Brain. Neuropsychopharmacology, 1998, 19, 365-380.	2.8	16
68	Effect of the reversible monoamine oxidase-A inhibitor befloxatone on the rat 5-hydroxytryptamine neurotransmission. European Journal of Pharmacology, 1998, 343, 179-192.	1.7	30
69	Long-Term Antidepressant Treatments Result in a Tonic Activation of Forebrain 5-HT1AReceptors. Journal of Neuroscience, 1998, 18, 10150-10156.	1.7	307
70	Modulation of the firing activity of noradrenergic neurones in the rat locus coeruleus by the 5-hydroxtryptamine system. British Journal of Pharmacology, 1997, 120, 865-875.	2.7	130
71	Noradrenergic modulation of central serotonergic neurotransmission: acute and long-term actions of mirtazapine. International Clinical Psychopharmacology, 1995, 10, 11-17.	0.9	62
72	Pre- and post-synaptic effects of the 5-HT3 agonist 2-Methyl-5-HT on the 5-HT system in the rat brain. Synapse, 1995, 20, 54-67.	0.6	34

#	Article	IF	CITATIONS
73	The Effects of Mirtazapine on the Interactions between Central Noradrenergic and Serotonergic Systems. CNS Drugs, 1995, 4, 13-17.	2.7	25
74	β2-Adrenoceptors are involved in lateral hypothalamic unit responses to hyperglycemia. Journal of Physiology (Paris), 1994, 88, 89-90.	2.1	1
75	Long-Term Adaptive Changes Induced by Antidepressants: From Conventional to Novel Therapies. , 0, , .		0
76	Neuroadaptations of the 5-HT System Induced by Antidepressant Treatments: Old and New Strategies. HSOA Journal of Addiction & Addictive Disorders, 0, 1, 1-11.	0.1	0