Zhong Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3430166/publications.pdf

Version: 2024-02-01

81 3,479 32 papers citations h-index

53 g-index

86 86
all docs docs citations

86 times ranked 3900 citing authors

#	Article	IF	CITATIONS
1	Mapping cross-variant neutralizing sites on the SARS-CoV-2 spike protein. Emerging Microbes and Infections, 2022, 11, 351-367.	6.5	19
2	A split NanoLuc complementation-based human norovirus-like particle entry assay facilitates evaluation of anti-norovirus antibodies in live cells. Antiviral Research, 2022, 197, 105231.	4.1	3
3	Molecular basis of receptor binding and antibody neutralization of Omicron. Nature, 2022, 604, 546-552.	27.8	135
4	Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies. Nature Communications, 2022, 13, 871.	12.8	107
5	Junctional and somatic hypermutation-induced CX4C motif is critical for the recognition of a highly conserved epitope on HCV E2 by a human broadly neutralizing antibody. Cellular and Molecular Immunology, 2021, 18, 675-685.	10.5	10
6	Protoporphyrin IX and verteporfin potently inhibit SARS-CoV-2 infection in vitro and in a mouse model expressing human ACE2. Science Bulletin, 2021, 66, 925-936.	9.0	29
7	Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Science Advances, 2021, 7, .	10.3	320
8	Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nature Communications, 2021, 12, 264.	12.8	81
9	Two immunogenic recombinant protein vaccine candidates showed disparate protective efficacy against Zika virus infection in rhesus macaques. Vaccine, 2021, 39, 915-925.	3.8	5
10	Identification of a blockade epitope of human norovirus GII.17. Emerging Microbes and Infections, 2021, 10, 954-963.	6.5	10
11	Functional and structural characterization of a two-MAb cocktail for delayed treatment of enterovirus D68 infections. Nature Communications, 2021, 12, 2904.	12.8	19
12	Elicitation of Broadly Neutralizing Antibodies against B.1.1.7, B.1.351, and B.1.617.1 SARS-CoV-2 Variants by Three Prototype Strain-Derived Recombinant Protein Vaccines. Viruses, 2021, 13, 1421.	3.3	6
13	Yeast-produced RBD-based recombinant protein vaccines elicit broadly neutralizing antibodies and durable protective immunity against SARS-CoV-2 infection. Cell Discovery, 2021, 7, 71.	6.7	26
14	Uncovering a conserved vulnerability site in SARSâ€CoVâ€2 by a human antibody. EMBO Molecular Medicine, 2021, 13, e14544.	6.9	17
15	Identification of Human Norovirus GII.3 Blockade Antibody Epitopes. Viruses, 2021, 13, 2058.	3.3	3
16	Conformational dynamics of the Beta and Kappa SARS-CoV-2 spike proteins and their complexes with ACE2 receptor revealed by cryo-EM. Nature Communications, 2021, 12, 7345.	12.8	58
17	A nanoparticle-based HCV vaccine with enhanced potency. Journal of Infectious Diseases, 2020, 221, 1304-1314.	4.0	34
18	Immunization with the receptor-binding domain of SARS-CoV-2 elicits antibodies cross-neutralizing SARS-CoV-2 and SARS-CoV without antibody-dependent enhancement. Cell Discovery, 2020, 6, 61.	6.7	52

#	Article	IF	CITATION
19	A new class of broadly neutralizing antibodies that target the glycan loop of Zika virus envelope protein. Cell Discovery, 2020, 6, 5.	6.7	20
20	Yeast-produced subunit protein vaccine elicits broadly neutralizing antibodies that protect mice against Zika virus lethal infection. Antiviral Research, 2019, 170, 104578.	4.1	15
21	Chimpanzee adenoviral vector prime-boost regimen elicits potent immune responses against Ebola virus in mice and rhesus macaques. Emerging Microbes and Infections, 2019, 8, 1086-1097.	6.5	13
22	Versatile Functionalization of Ferritin Nanoparticles by Intein-Mediated Trans-Splicing for Antigen/Adjuvant Co-delivery. Nano Letters, 2019, 19, 5469-5475.	9.1	23
23	Coxsackievirus A10 atomic structure facilitating the discovery of a broad-spectrum inhibitor against human enteroviruses. Cell Discovery, 2019, 5, 4.	6.7	26
24	Plant-Produced Anti-Enterovirus 71 (EV71) Monoclonal Antibody Efficiently Protects Mice Against EV71 Infection. Plants, 2019, 8, 560.	3.5	24
25	A trivalent HCV vaccine elicits broad and synergistic polyclonal antibody response in mice and rhesus monkey. Gut, 2019, 68, 140-149.	12.1	30
26	A virus-like particle vaccine protects mice against coxsackievirus A10 lethal infection. Antiviral Research, 2018, 152, 124-130.	4.1	19
27	Insect cell-produced recombinant protein subunit vaccines protect against Zika virus infection. Antiviral Research, 2018, 154, 97-103.	4.1	28
28	Antiviral effects of ferric ammonium citrate. Cell Discovery, 2018, 4, 14.	6.7	35
29	Enterovirus D68 virus-like particles expressed in <i>Pichia pastoris</i> potently induce neutralizing antibody responses and confer protection against lethal viral infection in mice. Emerging Microbes and Infections, 2018, 7, 1-22.	6.5	23
30	A virus-like particle vaccine confers protection against enterovirus D68 lethal challenge in mice. Vaccine, 2018, 36, 653-659.	3.8	33
31	Structure, Immunogenicity, and Protective Mechanism of an Engineered Enterovirus 71-Like Particle Vaccine Mimicking 80S Empty Capsid. Journal of Virology, 2018, 92, .	3.4	15
32	A 3.0-Angstrom Resolution Cryo-Electron Microscopy Structure and Antigenic Sites of Coxsackievirus A6-Like Particles. Journal of Virology, 2018, 92, .	3.4	14
33	Development of a Surrogate Neutralization Assay for Norovirus Vaccine Evaluation at the Cellular Level. Viruses, 2018, 10, 27.	3.3	7
34	A virus-like particle-based tetravalent vaccine for hand, foot, and mouth disease elicits broad and balanced protective immunity. Emerging Microbes and Infections, 2018, 7, 1-12.	6.5	39
35	A Mouse Model of Enterovirus D68 Infection for Assessment of the Efficacy of Inactivated Vaccine. Viruses, 2018, 10, 58.	3.3	44
36	Beta-Propiolactone Inactivation of Coxsackievirus A16 Induces Structural Alteration and Surface Modification of Viral Capsids. Journal of Virology, 2017, 91, .	3.4	34

#	Article	IF	CITATIONS
37	Interleukin-18 protects mice from Enterovirus 71 infection. Cytokine, 2017, 96, 132-137.	3.2	14
38	Immunization With a Subunit Hepatitis C Virus Vaccine Elicits Pan-Genotypic Neutralizing Antibodies and Intrahepatic T-Cell Responses in Nonhuman Primates. Journal of Infectious Diseases, 2017, 215, 1824-1831.	4.0	21
39	A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice. Antiviral Research, 2017, 145, 54-59.	4.1	10
40	Coxsackievirus A16 utilizes cell surface heparan sulfate glycosaminoglycans as its attachment receptor. Emerging Microbes and Infections, 2017, 6 , 1 -7.	6.5	20
41	Vaccine Development. , 2017, , 187-206.		1
42	Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody. PLoS Pathogens, 2016, 12, e1005454.	4.7	43
43	Virus-like particle-based vaccine against coxsackievirus A6 protects mice against lethal infections. Vaccine, 2016, 34, 4025-4031.	3.8	18
44	Improved plasmid-based recovery of coxsackievirus A16 infectious clone driven by human RNA polymerase I promoter. Virologica Sinica, 2016, 31, 339-341.	3.0	3
45	Inactivated coxsackievirus A10 experimental vaccines protect mice against lethal viral challenge. Vaccine, 2016, 34, 5005-5012.	3.8	25
46	An Ebola Virus-Like Particle-Based Reporter System Enables Evaluation of Antiviral Drugs <i>In Vivo</i> under Non-Biosafety Level 4 Conditions. Journal of Virology, 2016, 90, 8720-8728.	3.4	15
47	A Modular Vaccine Development Platform Based on Sortase-Mediated Site-Specific Tagging of Antigens onto Virus-Like Particles. Scientific Reports, 2016, 6, 25741.	3.3	33
48	Altered Glycosylation Patterns Increase Immunogenicity of a Subunit Hepatitis C Virus Vaccine, Inducing Neutralizing Antibodies Which Confer Protection in Mice. Journal of Virology, 2016, 90, 10486-10498.	3.4	68
49	Transcutaneous immunization via rapidly dissolvable microneedles protects against hand-foot-and-mouth disease caused by enterovirus 71. Journal of Controlled Release, 2016, 243, 291-302.	9.9	41
50	Yeast-produced recombinant virus-like particles of coxsackievirus A6 elicited protective antibodies in mice. Antiviral Research, 2016, 132, 165-169.	4.1	25
51	Coxsackievirus A16-like particles produced in Pichia pastoris elicit high-titer neutralizing antibodies and confer protection against lethal viral challenge in mice. Antiviral Research, 2016, 129, 47-51.	4.1	28
52	Phylogenetic analysis of the major causative agents of hand, foot and mouth disease in Suzhou city, Jiangsu province, China, in 2012–2013. Emerging Microbes and Infections, 2015, 4, 1-10.	6.5	36
53	Reciprocal Regulation between Enterovirus 71 and the NLRP3 Inflammasome. Cell Reports, 2015, 12, 42-48.	6.4	98
54	High-yield production of recombinant virus-like particles of enterovirus 71 in Pichia pastoris and their protective efficacy against oral viral challenge in mice. Vaccine, 2015, 33, 2335-2341.	3.8	55

#	Article	IF	Citations
55	Single Neutralizing Monoclonal Antibodies Targeting the VP1 GH Loop of Enterovirus 71 Inhibit both Virus Attachment and Internalization during Viral Entry. Journal of Virology, 2015, 89, 12084-12095.	3.4	49
56	A bivalent virus-like particle based vaccine induces a balanced antibody response against both enterovirus 71 and norovirus in mice. Vaccine, 2015, 33, 5779-5785.	3.8	26
57	Antibodies to P-selectin glycoprotein ligand-1 block dendritic cell-mediated enterovirus 71 transmission and prevent virus-induced cells death. Virulence, 2015, 6, 802-808.	4.4	2
58	Hexon-modified recombinant E1-deleted adenoviral vectors as bivalent vaccine carriers for Coxsackievirus A16 and Enterovirus 71. Vaccine, 2015, 33, 5087-5094.	3.8	16
59	Towards broadly protective polyvalent vaccines against hand, foot and mouth disease. Microbes and Infection, 2015, 17, 155-162.	1.9	21
60	A combination vaccine comprising of inactivated enterovirus 71 and coxsackievirus A16 elicits balanced protective immunity against both viruses. Vaccine, 2014, 32, 2406-2412.	3.8	67
61	A murine model of coxsackievirus A16 infection for anti-viral evaluation. Antiviral Research, 2014, 105, 26-31.	4.1	26
62	Chimeric Virus-Like Particle Vaccines Displaying Conserved Enterovirus 71 Epitopes Elicit Protective Neutralizing Antibodies in Mice through Divergent Mechanisms. Journal of Virology, 2014, 88, 72-81.	3.4	65
63	A virus-like particle based bivalent vaccine confers dual protection against enterovirus 71 and coxsackievirus A16 infections in mice. Vaccine, 2014, 32, 4296-4303.	3.8	64
64	Fighting Ebola with ZMapp: spotlight on plant-made antibody. Science China Life Sciences, 2014, 57, 987-988.	4.9	45
65	The molecule of DC-SIGN captures enterovirus 71 and confers dendritic cell-mediated viral trans-infection. Virology Journal, 2014, 11, 47.	3.4	21
66	Identification of conserved neutralizing linear epitopes within the VP1 protein of coxsackievirus A16. Vaccine, 2013, 31, 2130-2136.	3.8	61
67	Active immunization with a Coxsackievirus A16 experimental inactivated vaccine induces neutralizing antibodies and protects mice against lethal infection. Vaccine, 2013, 31, 2215-2221.	3.8	58
68	Characterization of enterovirus 71 capsids using subunit protein-specific polyclonal antibodies. Journal of Virological Methods, 2013, 187, 127-131.	2.1	21
69	Neutralizing Antibodies Induced by Recombinant Virus-Like Particles of Enterovirus 71 Genotype C4 Inhibit Infection at Pre- and Post-attachment Steps. PLoS ONE, 2013, 8, e57601.	2.5	65
70	A virus-like particle vaccine for coxsackievirus A16 potently elicits neutralizing antibodies that protect mice against lethal challenge. Vaccine, 2012, 30, 6642-6648.	3.8	65
71	Development of murine monoclonal antibodies with potent neutralization effects on enterovirus 71. Journal of Virological Methods, 2012, 186, 193-197.	2.1	32
72	Detection, characterization and quantitation of Coxsackievirus A16 using polyclonal antibodies against recombinant capsid subunit proteins. Journal of Virological Methods, 2011, 173, 115-120.	2.1	40

ZHONG HUANG

#	Article	IF	CITATION
73	Construction and characterization of an infectious clone of coxsackievirus A16. Virology Journal, 2011, 8, 534.	3.4	29
74	Singleâ€Particle Tracking of Hepatitis B Virusâ€like Vesicle Entry into Cells. Small, 2011, 7, 1212-1218.	10.0	33
75	Highâ€level rapid production of fullâ€size monoclonal antibodies in plants by a singleâ€vector DNA replicon system. Biotechnology and Bioengineering, 2010, 106, 9-17.	3.3	166
76	A DNA replicon system for rapid highâ€level production of virusâ€like particles in plants. Biotechnology and Bioengineering, 2009, 103, 706-714.	3.3	163
77	Highâ€yield rapid production of hepatitis B surface antigen in plant leaf by a viral expression system. Plant Biotechnology Journal, 2008, 6, 202-209.	8.3	70
78	Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine, 2006, 24, 2506-2513.	3.8	116
79	Virus-like particle expression and assembly in plants: hepatitis B and Norwalk viruses. Vaccine, 2005, 23, 1851-1858.	3.8	115
80	Conformational analysis of hepatitis B surface antigen fusions in an Agrobacterium-mediated transient expression system. Plant Biotechnology Journal, 2004, 2, 241-249.	8.3	63
81	Neutralizing Potency of Prototype and Omicron RBD mRNA Vaccines Against Omicron Variant. Frontiers in Immunology, 0, 13, .	4.8	6