Zhong Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3430166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Science Advances, 2021, 7, .	10.3	320
2	Highâ€level rapid production of fullâ€size monoclonal antibodies in plants by a singleâ€vector DNA replicon system. Biotechnology and Bioengineering, 2010, 106, 9-17.	3.3	166
3	A DNA replicon system for rapid highâ€level production of virusâ€like particles in plants. Biotechnology and Bioengineering, 2009, 103, 706-714.	3.3	163
4	Molecular basis of receptor binding and antibody neutralization of Omicron. Nature, 2022, 604, 546-552.	27.8	135
5	Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine, 2006, 24, 2506-2513.	3.8	116
6	Virus-like particle expression and assembly in plants: hepatitis B and Norwalk viruses. Vaccine, 2005, 23, 1851-1858.	3.8	115
7	Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies. Nature Communications, 2022, 13, 871.	12.8	107
8	Reciprocal Regulation between Enterovirus 71 and the NLRP3 Inflammasome. Cell Reports, 2015, 12, 42-48.	6.4	98
9	Development and structural basis of a two-MAb cocktail for treating SARS-CoV-2 infections. Nature Communications, 2021, 12, 264.	12.8	81
10	Highâ€yield rapid production of hepatitis B surface antigen in plant leaf by a viral expression system. Plant Biotechnology Journal, 2008, 6, 202-209.	8.3	70
11	Altered Glycosylation Patterns Increase Immunogenicity of a Subunit Hepatitis C Virus Vaccine, Inducing Neutralizing Antibodies Which Confer Protection in Mice. Journal of Virology, 2016, 90, 10486-10498.	3.4	68
12	A combination vaccine comprising of inactivated enterovirus 71 and coxsackievirus A16 elicits balanced protective immunity against both viruses. Vaccine, 2014, 32, 2406-2412.	3.8	67
13	A virus-like particle vaccine for coxsackievirus A16 potently elicits neutralizing antibodies that protect mice against lethal challenge. Vaccine, 2012, 30, 6642-6648.	3.8	65
14	Neutralizing Antibodies Induced by Recombinant Virus-Like Particles of Enterovirus 71 Genotype C4 Inhibit Infection at Pre- and Post-attachment Steps. PLoS ONE, 2013, 8, e57601.	2.5	65
15	Chimeric Virus-Like Particle Vaccines Displaying Conserved Enterovirus 71 Epitopes Elicit Protective Neutralizing Antibodies in Mice through Divergent Mechanisms. Journal of Virology, 2014, 88, 72-81.	3.4	65
16	A virus-like particle based bivalent vaccine confers dual protection against enterovirus 71 and coxsackievirus A16 infections in mice. Vaccine, 2014, 32, 4296-4303.	3.8	64
17	Conformational analysis of hepatitis B surface antigen fusions in an Agrobacterium-mediated transient expression system. Plant Biotechnology Journal, 2004, 2, 241-249.	8.3	63
18	Identification of conserved neutralizing linear epitopes within the VP1 protein of coxsackievirus A16. Vaccine, 2013, 31, 2130-2136.	3.8	61

#	Article	IF	CITATIONS
19	Active immunization with a Coxsackievirus A16 experimental inactivated vaccine induces neutralizing antibodies and protects mice against lethal infection. Vaccine, 2013, 31, 2215-2221.	3.8	58
20	Conformational dynamics of the Beta and Kappa SARS-CoV-2 spike proteins and their complexes with ACE2 receptor revealed by cryo-EM. Nature Communications, 2021, 12, 7345.	12.8	58
21	High-yield production of recombinant virus-like particles of enterovirus 71 in Pichia pastoris and their protective efficacy against oral viral challenge in mice. Vaccine, 2015, 33, 2335-2341.	3.8	55
22	Immunization with the receptor-binding domain of SARS-CoV-2 elicits antibodies cross-neutralizing SARS-CoV-2 and SARS-CoV without antibody-dependent enhancement. Cell Discovery, 2020, 6, 61.	6.7	52
23	Single Neutralizing Monoclonal Antibodies Targeting the VP1 GH Loop of Enterovirus 71 Inhibit both Virus Attachment and Internalization during Viral Entry. Journal of Virology, 2015, 89, 12084-12095.	3.4	49
24	Fighting Ebola with ZMapp: spotlight on plant-made antibody. Science China Life Sciences, 2014, 57, 987-988.	4.9	45
25	A Mouse Model of Enterovirus D68 Infection for Assessment of the Efficacy of Inactivated Vaccine. Viruses, 2018, 10, 58.	3.3	44
26	Structural Basis for Recognition of Human Enterovirus 71 by a Bivalent Broadly Neutralizing Monoclonal Antibody. PLoS Pathogens, 2016, 12, e1005454.	4.7	43
27	Transcutaneous immunization via rapidly dissolvable microneedles protects against hand-foot-and-mouth disease caused by enterovirus 71. Journal of Controlled Release, 2016, 243, 291-302.	9.9	41
28	Detection, characterization and quantitation of Coxsackievirus A16 using polyclonal antibodies against recombinant capsid subunit proteins. Journal of Virological Methods, 2011, 173, 115-120.	2.1	40
29	A virus-like particle-based tetravalent vaccine for hand, foot, and mouth disease elicits broad and balanced protective immunity. Emerging Microbes and Infections, 2018, 7, 1-12.	6.5	39
30	Phylogenetic analysis of the major causative agents of hand, foot and mouth disease in Suzhou city, Jiangsu province, China, in 2012–2013. Emerging Microbes and Infections, 2015, 4, 1-10.	6.5	36
31	Antiviral effects of ferric ammonium citrate. Cell Discovery, 2018, 4, 14.	6.7	35
32	Beta-Propiolactone Inactivation of Coxsackievirus A16 Induces Structural Alteration and Surface Modification of Viral Capsids. Journal of Virology, 2017, 91, .	3.4	34
33	A nanoparticle-based HCV vaccine with enhanced potency. Journal of Infectious Diseases, 2020, 221, 1304-1314.	4.0	34
34	Singleâ€Particle Tracking of Hepatitis B Virusâ€like Vesicle Entry into Cells. Small, 2011, 7, 1212-1218.	10.0	33
35	A Modular Vaccine Development Platform Based on Sortase-Mediated Site-Specific Tagging of Antigens onto Virus-Like Particles. Scientific Reports, 2016, 6, 25741.	3.3	33
36	A virus-like particle vaccine confers protection against enterovirus D68 lethal challenge in mice. Vaccine, 2018, 36, 653-659.	3.8	33

#	Article	IF	CITATIONS
37	Development of murine monoclonal antibodies with potent neutralization effects on enterovirus 71. Journal of Virological Methods, 2012, 186, 193-197.	2.1	32
38	A trivalent HCV vaccine elicits broad and synergistic polyclonal antibody response in mice and rhesus monkey. Gut, 2019, 68, 140-149.	12.1	30
39	Construction and characterization of an infectious clone of coxsackievirus A16. Virology Journal, 2011, 8, 534.	3.4	29
40	Protoporphyrin IX and verteporfin potently inhibit SARS-CoV-2 infection in vitro and in a mouse model expressing human ACE2. Science Bulletin, 2021, 66, 925-936.	9.0	29
41	Coxsackievirus A16-like particles produced in Pichia pastoris elicit high-titer neutralizing antibodies and confer protection against lethal viral challenge in mice. Antiviral Research, 2016, 129, 47-51.	4.1	28
42	Insect cell-produced recombinant protein subunit vaccines protect against Zika virus infection. Antiviral Research, 2018, 154, 97-103.	4.1	28
43	A murine model of coxsackievirus A16 infection for anti-viral evaluation. Antiviral Research, 2014, 105, 26-31.	4.1	26
44	A bivalent virus-like particle based vaccine induces a balanced antibody response against both enterovirus 71 and norovirus in mice. Vaccine, 2015, 33, 5779-5785.	3.8	26
45	Coxsackievirus A10 atomic structure facilitating the discovery of a broad-spectrum inhibitor against human enteroviruses. Cell Discovery, 2019, 5, 4.	6.7	26
46	Yeast-produced RBD-based recombinant protein vaccines elicit broadly neutralizing antibodies and durable protective immunity against SARS-CoV-2 infection. Cell Discovery, 2021, 7, 71.	6.7	26
47	Inactivated coxsackievirus A10 experimental vaccines protect mice against lethal viral challenge. Vaccine, 2016, 34, 5005-5012.	3.8	25
48	Yeast-produced recombinant virus-like particles of coxsackievirus A6 elicited protective antibodies in mice. Antiviral Research, 2016, 132, 165-169.	4.1	25
49	Plant-Produced Anti-Enterovirus 71 (EV71) Monoclonal Antibody Efficiently Protects Mice Against EV71 Infection. Plants, 2019, 8, 560.	3.5	24
50	Enterovirus D68 virus-like particles expressed in <i>Pichia pastoris</i> potently induce neutralizing antibody responses and confer protection against lethal viral infection in mice. Emerging Microbes and Infections, 2018, 7, 1-22.	6.5	23
51	Versatile Functionalization of Ferritin Nanoparticles by Intein-Mediated Trans-Splicing for Antigen/Adjuvant Co-delivery. Nano Letters, 2019, 19, 5469-5475.	9.1	23
52	Characterization of enterovirus 71 capsids using subunit protein-specific polyclonal antibodies. Journal of Virological Methods, 2013, 187, 127-131.	2.1	21
53	The molecule of DC-SIGN captures enterovirus 71 and confers dendritic cell-mediated viral trans-infection. Virology Journal, 2014, 11, 47.	3.4	21
54	Towards broadly protective polyvalent vaccines against hand, foot and mouth disease. Microbes and Infection, 2015, 17, 155-162.	1.9	21

#	Article	IF	CITATIONS
55	Immunization With a Subunit Hepatitis C Virus Vaccine Elicits Pan-Genotypic Neutralizing Antibodies and Intrahepatic T-Cell Responses in Nonhuman Primates. Journal of Infectious Diseases, 2017, 215, 1824-1831.	4.0	21
56	Coxsackievirus A16 utilizes cell surface heparan sulfate glycosaminoglycans as its attachment receptor. Emerging Microbes and Infections, 2017, 6, 1-7.	6.5	20
57	A new class of broadly neutralizing antibodies that target the glycan loop of Zika virus envelope protein. Cell Discovery, 2020, 6, 5.	6.7	20
58	A virus-like particle vaccine protects mice against coxsackievirus A10 lethal infection. Antiviral Research, 2018, 152, 124-130.	4.1	19
59	Functional and structural characterization of a two-MAb cocktail for delayed treatment of enterovirus D68 infections. Nature Communications, 2021, 12, 2904.	12.8	19
60	Mapping cross-variant neutralizing sites on the SARS-CoV-2 spike protein. Emerging Microbes and Infections, 2022, 11, 351-367.	6.5	19
61	Virus-like particle-based vaccine against coxsackievirus A6 protects mice against lethal infections. Vaccine, 2016, 34, 4025-4031.	3.8	18
62	Uncovering a conserved vulnerability site in SARS oVâ€2 by a human antibody. EMBO Molecular Medicine, 2021, 13, e14544.	6.9	17
63	Hexon-modified recombinant E1-deleted adenoviral vectors as bivalent vaccine carriers for Coxsackievirus A16 and Enterovirus 71. Vaccine, 2015, 33, 5087-5094.	3.8	16
64	An Ebola Virus-Like Particle-Based Reporter System Enables Evaluation of Antiviral Drugs <i>In Vivo</i> under Non-Biosafety Level 4 Conditions. Journal of Virology, 2016, 90, 8720-8728.	3.4	15
65	Structure, Immunogenicity, and Protective Mechanism of an Engineered Enterovirus 71-Like Particle Vaccine Mimicking 80S Empty Capsid. Journal of Virology, 2018, 92, .	3.4	15
66	Yeast-produced subunit protein vaccine elicits broadly neutralizing antibodies that protect mice against Zika virus lethal infection. Antiviral Research, 2019, 170, 104578.	4.1	15
67	Interleukin-18 protects mice from Enterovirus 71 infection. Cytokine, 2017, 96, 132-137.	3.2	14
68	A 3.0-Angstrom Resolution Cryo-Electron Microscopy Structure and Antigenic Sites of Coxsackievirus A6-Like Particles. Journal of Virology, 2018, 92, .	3.4	14
69	Chimpanzee adenoviral vector prime-boost regimen elicits potent immune responses against Ebola virus in mice and rhesus macaques. Emerging Microbes and Infections, 2019, 8, 1086-1097.	6.5	13
70	A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice. Antiviral Research, 2017, 145, 54-59.	4.1	10
71	Junctional and somatic hypermutation-induced CX4C motif is critical for the recognition of a highly conserved epitope on HCV E2 by a human broadly neutralizing antibody. Cellular and Molecular Immunology, 2021, 18, 675-685.	10.5	10
72	Identification of a blockade epitope of human norovirus GII.17. Emerging Microbes and Infections, 2021, 10, 954-963.	6.5	10

#	Article	IF	CITATIONS
73	Development of a Surrogate Neutralization Assay for Norovirus Vaccine Evaluation at the Cellular Level. Viruses, 2018, 10, 27.	3.3	7
74	Elicitation of Broadly Neutralizing Antibodies against B.1.1.7, B.1.351, and B.1.617.1 SARS-CoV-2 Variants by Three Prototype Strain-Derived Recombinant Protein Vaccines. Viruses, 2021, 13, 1421.	3.3	6
75	Neutralizing Potency of Prototype and Omicron RBD mRNA Vaccines Against Omicron Variant. Frontiers in Immunology, 0, 13, .	4.8	6
76	Two immunogenic recombinant protein vaccine candidates showed disparate protective efficacy against Zika virus infection in rhesus macaques. Vaccine, 2021, 39, 915-925.	3.8	5
77	Improved plasmid-based recovery of coxsackievirus A16 infectious clone driven by human RNA polymerase I promoter. Virologica Sinica, 2016, 31, 339-341.	3.0	3
78	Identification of Human Norovirus GII.3 Blockade Antibody Epitopes. Viruses, 2021, 13, 2058.	3.3	3
79	A split NanoLuc complementation-based human norovirus-like particle entry assay facilitates evaluation of anti-norovirus antibodies in live cells. Antiviral Research, 2022, 197, 105231.	4.1	3
80	Antibodies to P-selectin glycoprotein ligand-1 block dendritic cell-mediated enterovirus 71 transmission and prevent virus-induced cells death. Virulence, 2015, 6, 802-808.	4.4	2
81	Vaccine Development. , 2017, , 187-206.		1