
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3429949/publications.pdf Version: 2024-02-01

Τλολεμι ΕΜΔ

#	Article	IF	CITATIONS
1	Recent progress in catalytic conversions of carbon dioxide. Catalysis Science and Technology, 2014, 4, 1482.	2.1	463
2	Bifunctional Porphyrin Catalysts for the Synthesis of Cyclic Carbonates from Epoxides and CO ₂ : Structural Optimization and Mechanistic Study. Journal of the American Chemical Society, 2014, 136, 15270-15279.	6.6	404
3	Bifunctional Catalysts Based on <i>m</i> â€Phenyleneâ€Bridged Porphyrin Dimer and Trimer Platforms: Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides. Angewandte Chemie - International Edition, 2015, 54, 134-138.	7.2	273
4	A bifunctional catalyst for carbon dioxide fixation: cooperative double activation of epoxides for the synthesis of cyclic carbonates. Chemical Communications, 2012, 48, 4489.	2.2	268
5	Highly Active and Robust Metalloporphyrin Catalysts for the Synthesis of Cyclic Carbonates from a Broad Range of Epoxides and Carbon Dioxide. Chemistry - A European Journal, 2016, 22, 6556-6563.	1.7	176
6	Versatile and Practical Macrocyclic Reagent with Multiple Hydrogen-Bonding Sites for Chiral Discrimination in NMR. Journal of the American Chemical Society, 2007, 129, 10591-10596.	6.6	170
7	Highly active and robust organic–inorganic hybrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Green Chemistry, 2008, 10, 337.	4.6	169
8	Solvent-Induced Sign Inversion of Circularly Polarized Luminescence: Control of Excimer Chirality by Hydrogen Bonding. Journal of the American Chemical Society, 2020, 142, 1774-1779.	6.6	157
9	Binaphthyl–Bipyridyl Cyclic Dyads as a Chiroptical Switch. Journal of the American Chemical Society, 2018, 140, 5334-5338.	6.6	155
10	Bifunctional Organocatalyst for Activation of Carbon Dioxide and Epoxide To Produce Cyclic Carbonate: Betaine as a New Catalytic Motif. Organic Letters, 2010, 12, 5728-5731.	2.4	153
11	Evolving Fluorophores into Circularly Polarized Luminophores with a Chiral Naphthalene Tetramer: Proposal of Excimer Chirality Rule for Circularly Polarized Luminescence. Journal of the American Chemical Society, 2019, 141, 6185-6190.	6.6	142
12	Suzukiâ^'Miyaura Coupling Reaction Using Pentafluorophenylboronic Acid. Organic Letters, 2005, 7, 4915-4917.	2.4	116
13	Quaternary ammonium hydroxide as a metal-free and halogen-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Catalysis Science and Technology, 2015, 5, 2314-2321.	2.1	107
14	Azaheliceneâ€Fused BODIPY Analogues Showing Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2020, 59, 7813-7817.	7.2	102
15	Highly Efficient Chemoenzymatic Synthesis of Methyl (<i>R</i>)â€ <i>o</i> hloromandelate, a Key Intermediate for Clopidogrel, <i>via</i> Asymmetric Reduction with Recombinant <i>Escherichia coli</i> . Advanced Synthesis and Catalysis, 2008, 350, 2039-2044.	2.1	99
16	Robust porphyrin catalysts immobilized on biogenous iron oxide for the repetitive conversions of epoxides and CO2 into cyclic carbonates. Green Chemistry, 2013, 15, 2485.	4.6	95
17	Stereoselective Synthesis of Bicyclic Tertiary Alcohols with Quaternary Stereocenters via Intramolecular Crossed Benzoin Reactions Catalyzed by <i>N</i> -Heterocyclic Carbenes. Organic Letters, 2009, 11, 4866-4869.	2.4	81
18	Asymmetric reduction of ketones using recombinant E. coli cells that produce a versatile carbonyl reductase with high enantioselectivity and broad substrate specificity. Tetrahedron, 2006, 62, 6143-6149.	1.0	79

#	Article	IF	CITATIONS
19	Intense excimer CPL of pyrenes linked to a quaternaphthyl. Chemical Communications, 2018, 54, 1449-1452.	2.2	77
20	Versatile and Practical Chiral Shift Reagent with Hydrogen-Bond Donor/Acceptor Sites in a Macrocyclic Cavity. Organic Letters, 2006, 8, 3773-3775.	2.4	74
21	Axially Chiral <i>peri</i> -Xanthenoxanthenes as a Circularly Polarized Luminophore. Journal of the American Chemical Society, 2019, 141, 11852-11857.	6.6	72
22	Rational strategies for highly enantioselective lipase-catalyzed kinetic resolutions of very bulky chiral compounds: substrate design and high-temperature biocatalysis. Tetrahedron: Asymmetry, 2004, 15, 2765-2770.	1.8	68
23	Hemisquaramide Tweezers as Organocatalysts: Synthesis of Cyclic Carbonates from Epoxides and CO ₂ . Organic Letters, 2019, 21, 1397-1401.	2.4	66
24	Determination of enantiomeric excess of carboxylates by fluorescent macrocyclic sensors. Chemical Science, 2016, 7, 2016-2022.	3.7	65
25	Highly Sensitive Chiral Shift Reagent Bearing Two Zinc Porphyrins. Organic Letters, 2005, 7, 3985-3988.	2.4	57
26	Highly enantioselective and efficient synthesis of methyl (R)-o-chloromandelate with recombinant E. coli: toward practical and green access to clopidogrel. Organic and Biomolecular Chemistry, 2007, 5, 1175.	1.5	55
27	Redesign of enzyme for improving catalytic activity and enantioselectivity toward poor substrates: manipulation of the transition state. Organic and Biomolecular Chemistry, 2012, 10, 6299.	1.5	55
28	Unexpected Macrocyclic Multinuclear Zinc and Nickel Complexes that Function as Multitasking Catalysts for CO ₂ Fixations. Angewandte Chemie - International Edition, 2019, 58, 9984-9988.	7.2	55
29	Chiral porphyrin dimer with a macrocyclic cavity for intercalation of aromatic guests. Chemical Communications, 2011, 47, 6090.	2.2	54
30	Electronic Tuning of Zinc Porphyrin Catalysts for the Conversion of Epoxides and Carbon Dioxide into Cyclic Carbonates. ChemCatChem, 2017, 9, 946-949.	1.8	54
31	Aluminum porphyrins with quaternary ammonium halides as catalysts for copolymerization of cyclohexene oxide and CO ₂ : metal–ligand cooperative catalysis. Chemical Science, 2020, 11, 5669-5675.	3.7	54
32	Biogenous iron oxide-immobilized palladium catalyst for the solvent-free Suzuki–Miyaura coupling reaction. Tetrahedron Letters, 2012, 53, 329-332.	0.7	53
33	Carbazole-Based Boron Dipyrromethenes (BODIPYs): Facile Synthesis, Structures, and Fine-Tunable Optical Properties. Organic Letters, 2015, 17, 3090-3093.	2.4	53
34	Chiral Macrocyclic Organocatalysts for Kinetic Resolution of Disubstituted Epoxides with Carbon Dioxide. Organic Letters, 2017, 19, 4070-4073.	2.4	53
35	High Enantioselectivity and Broad Substrate Specificity of a Carbonyl Reductase:Â Toward a Versatile Biocatalyst. Journal of Organic Chemistry, 2001, 66, 8682-8684.	1.7	50
36	Tuning the Chiral Cavity of Macrocyclic Receptor for Chiral Recognition and Discrimination. Journal of Organic Chemistry, 2008, 73, 9129-9132.	1.7	48

#	Article	IF	CITATIONS
37	Selective Anion Sensing by Chiral Macrocyclic Receptors with Multiple Hydrogen-Bonding Sites. Organic Letters, 2014, 16, 1302-1305.	2.4	48
38	Construction of Contiguous Tetrasubstituted Carbon Stereocenters by Intramolecular Crossed Benzoin Reactions Catalyzed by Nâ€Heterocyclic Carbene (NHC) Organocatalyst. Advanced Synthesis and Catalysis, 2012, 354, 3283-3290.	2.1	46
39	Chiroptical and catalytic properties of doubly binaphthyl-strapped chiral porphyrins. Chemical Communications, 2019, 55, 1064-1067.	2.2	45
40	Colorâ€Tunable Solidâ€State Fluorescence Emission from Carbazoleâ€Based BODIPYs. Chemistry - A European Journal, 2016, 22, 7508-7513.	1.7	44
41	Highly active lipase immobilized on biogenous iron oxide via an organic bridging group: the dramatic effect of the immobilization support on enzymatic function. Green Chemistry, 2011, 13, 3187.	4.6	43
42	Circularly Polarized Luminescence Liquids Based on Siloxybinaphthyls: Best Binaphthyl Dihedral Angle in the Excited State. Angewandte Chemie - International Edition, 2021, 60, 9968-9972.	7.2	43
43	Synthesis of chiral carbazole-based BODIPYs showing circularly polarized luminescence. Chemical Communications, 2019, 55, 3136-3139.	2.2	42
44	Chemical modification of biogenous iron oxide to create an excellent enzyme scaffold. Organic and Biomolecular Chemistry, 2010, 8, 336-338.	1.5	41
45	Intermolecular oxygen atomâ<ï€ interaction in the crystal packing of chiral amino alcohol bearing a pentafluorophenyl group. Journal of Fluorine Chemistry, 2003, 122, 201-205.	0.9	40
46	Calix[4]pyrroles as macrocyclic organocatalysts for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Catalysis Science and Technology, 2018, 8, 4193-4198.	2.1	40
47	Tetrameric and Hexameric Porphyrin Nanorings: Template Synthesis and Photophysical Properties. Journal of the American Chemical Society, 2020, 142, 15661-15666.	6.6	37
48	Synthesis of silyl formates, formamides, and aldehydes via solvent-free organocatalytic hydrosilylation of CO2. Chemical Communications, 2020, 56, 5783-5786.	2.2	37
49	Asymmetric reduction of a variety of ketones with a recombinant carbonyl reductase: identification of the gene encoding a versatile biocatalyst. Tetrahedron: Asymmetry, 2005, 16, 1075-1078.	1.8	36
50	Biomimetic trifunctional organocatalyst showing a great acceleration for the transesterification between vinyl ester and alcohol. Chemical Communications, 2008, , 957.	2.2	36
51	Solvent-Free Benzoin and Stetter Reactions with a Small Amount of NHC Catalyst in the Liquid or Semisolid State. Organic Letters, 2016, 18, 5764-5767.	2.4	36
52	Azaheliceneâ€Fused BODIPY Analogues Showing Circularly Polarized Luminescence. Angewandte Chemie, 2020, 132, 7887-7891.	1.6	36
53	Rational control of enantioselectivity of lipase by site-directed mutagenesis based on the mechanism. Chemical Communications, 2005, , 4650.	2.2	35
54	Synergistic effect of quaternary ammonium hydroxide and crown ether on the rapid and clear dissolution of cellulose at room temperature. RSC Advances, 2014, 4, 2523-2525.	1.7	34

#	Article	IF	CITATIONS
55	Macrocyclic multinuclear metal complexes acting as catalysts for organic synthesis. Catalysis Science and Technology, 2020, 10, 12-34.	2.1	34
56	Lipase-Catalyzed Resolution of (2R*,3S*)- and (2R*,3R*)-3-Methyl-3-phenyl-2-aziridinemethanol at Low Temperatures and Determination of the Absolute Configurations of the Four Stereoisomers. Journal of Organic Chemistry, 2005, 70, 1369-1375.	1.7	33
57	Lipase-catalyzed dynamic kinetic resolution giving optically active cyanohydrins: use of silica-supported ammonium hydroxide and porous ceramic-immobilized lipase. Tetrahedron, 2008, 64, 2178-2183.	1.0	33
58	Synthetic macrocyclic receptors in chiral analysis and separation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 74, 41-55.	1.6	33
59	Transition-state models are useful for versatile biocatalysts: kinetics and thermodynamics of enantioselective acylations of secondary alcohols catalyzed by lipase and subtilisin. Journal of Molecular Catalysis B: Enzymatic, 2003, 22, 181-192.	1.8	32
60	Synthesis and Evaluation of Chiral Selectors with Multiple Hydrogen-Bonding Sites in the Macrocyclic Cavities. Journal of Organic Chemistry, 2010, 75, 4492-4500.	1.7	31
61	Binaphthylâ€Bridged Pyrenophanes: Intense Circularly Polarized Luminescence Based on a <i>D</i> ₂ Symmetry Strategy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
62	Enhancement of the Efficiency of the Low Temperature Method for Kinetic Resolution of Primary Alcohols by Optimizing the Organic Bridges in Porous Ceramic-Immobilized Lipase. Bulletin of the Chemical Society of Japan, 2003, 76, 1441-1446.	2.0	29
63	Theoretical Study on Highly Active Bifunctional Metalloporphyrin Catalysts for the Coupling Reaction of Epoxides with Carbon Dioxide. Chemical Record, 2016, 16, 2260-2267.	2.9	29
64	Rational creation of mutant enzyme showing remarkable enhancement of catalytic activity and enantioselectivity toward poor substrates. Chemical Communications, 2010, 46, 5440.	2.2	27
65	Chiral Bifunctional Metalloporphyrin Catalysts for Kinetic Resolution of Epoxides with Carbon Dioxide. Organic Letters, 2019, 21, 1853-1856.	2.4	26
66	Synthesis of a Molecular Tweezer Containing Pentafluorophenyl Groups and Investigation of the π–π Stacking Interaction for a Pentafluorophenyl Group in a Polar Organic Solvent. Bulletin of the Chemical Society of Japan, 2005, 78, 2175-2179.	2.0	25
67	Highly enantioselective lipase-catalyzed reactions at high temperatures up to 120°C in organic solvent. Tetrahedron: Asymmetry, 2003, 14, 3943-3947.	1.8	24
68	Synthesis of carbazole-based BODIPY dimers showing red fluorescence in the solid state. Organic and Biomolecular Chemistry, 2017, 15, 9283-9287.	1.5	24
69	Synthesis and Chiroptical Properties of Chiral Carbazoleâ€Based BODIPYs. Chemistry - A European Journal, 2020, 26, 4261-4268.	1.7	23
70	Aggregationâ€Induced Circularly Polarized Luminescence from Boron Complexes with a Carbazolyl Schiff Base. Chemistry - A European Journal, 2020, 26, 13016-13021.	1.7	23
71	5-[4-(1-Hydroxyethyl)phenyl]-10,15,20-triphenylporphyrin as a Probe of the Transition-State Conformation in Hydrolase-Catalyzed Enantioselective Transesterifications. Journal of Organic Chemistry, 2002, 67, 2144-2151.	1.7	22
72	Carbazole-based BODIPYs with ethynyl substituents at the boron center: solid-state excimer fluorescence in the VIS/NIR region. Organic and Biomolecular Chemistry, 2017, 15, 7783-7788.	1.5	22

#	Article	IF	CITATIONS
73	Cross-Coupling Approach to an Array of Macrocyclic Receptors Functioning as Chiral Solvating Agents. Journal of Organic Chemistry, 2018, 83, 10762-10769.	1.7	22
74	The effect of temperature on the lipase-catalyzed asymmetric protonation of 1-acetoxy-2-methylcyclohexene giving (R)-2-methylcyclohexanone. Tetrahedron: Asymmetry, 2004, 15, 1929-1932.	1.8	21
75	Practical Resolution of 3-Phenyl-2H-azirine-2-methanol at Very Low Temperature by Using Lipase Immobilized on Porous Ceramic and Optimized Acylating Agent. Bulletin of the Chemical Society of Japan, 2003, 76, 1819-1821.	2.0	20
76	Reestimation of the Taft's Substituent Constant of the Pentafluorophenyl Group. Journal of Organic Chemistry, 2004, 69, 7340-7343.	1.7	20
77	Molecular Recognition of Chiral Diporphyrin Receptor with a Macrocyclic Cavity for Intercalation of Aromatic Compounds. Bulletin of the Chemical Society of Japan, 2012, 85, 101-109.	2.0	19
78	Chiral exciplex dyes showing circularly polarized luminescence: extension of the excimer chirality rule. Chemical Science, 2021, 12, 14570-14576.	3.7	19
79	Synthesis of Enantiomerically Pure (R,R)- and (S,S)-1,2-Bis(pentafluorophenyl)ethane-1,2-diamine and Evaluation of the pKaValue by Ab Initio Calculations. Bulletin of the Chemical Society of Japan, 2004, 77, 1001-1008.	2.0	18
80	Synthesis of molecular tweezers bearing pentafluorophenyl and several pendant aryl groups. Journal of Fluorine Chemistry, 2006, 127, 604-609.	0.9	18
81	Circularly Polarized Luminescence Liquids Based on Siloxybinaphthyls: Best Binaphthyl Dihedral Angle in the Excited State. Angewandte Chemie, 2021, 133, 10056-10060.	1.6	18
82	<i>C</i> -Methylenation of anilines and indoles with CO ₂ and hydrosilane using a pentanuclear zinc complex catalyst. Chemical Communications, 2021, 57, 8083-8086.	2.2	17
83	Chemical Modification of Lipase for Rational Enhancement of Enantioselectivity. Chemistry Letters, 2015, 44, 1374-1376.	0.7	16
84	Intramolecular Electronic Coupling in the Thiophene-Bridged Carbazole-Based Diporphyrin. Organic Letters, 2016, 18, 6070-6073.	2.4	16
85	Empirical method for predicting enantioselectivity in catalytic reactions: demonstration with lipase and oxazaborolidine. Tetrahedron, 2009, 65, 9583-9591.	1.0	15
86	Facile Synthesis of Azahelicenes and Diaza[8]circulenes through the Intramolecular Scholl Reaction. Chemistry - A European Journal, 2021, 27, 15699-15705.	1.7	15
87	Minimization of Amounts of Catalyst and Solvent in NHC-Catalyzed Benzoin Reactions of Solid Aldehydes: Mechanistic Consideration of Solid-to-Solid Conversion and Total Synthesis of Isodarparvinol B. ACS Omega, 2020, 5, 10207-10216.	1.6	14
88	Enhancement of protein thermostability by three consecutive mutations using loop-walking method and machine learning. Scientific Reports, 2021, 11, 11883.	1.6	13
89	Kinetic resolution of 5-(hydroxymethyl)-3-phenyl-2-isoxazoline by using the â€~low-temperature method' with porous ceramic-immobilized lipase. Tetrahedron: Asymmetry, 2005, 16, 1535-1539.	1.8	12
90	Chemoenzymatic synthesis of optically active alcohol and β-amino-acid derivative containing the difluoromethylene group. Journal of Molecular Catalysis B: Enzymatic, 2010, 66, 198-202.	1.8	12

#	Article	IF	CITATIONS
91	Synthesis and electronic properties of ï€-expanded carbazole-based porphyrins. Chemical Communications, 2019, 55, 10162-10165.	2.2	12
92	Deoxygenative CO ₂ conversions with triphenylborane and phenylsilane in the presence of secondary amines or nitrogen-containing aromatics. Green Chemistry, 2022, 24, 2385-2390.	4.6	12
93	Hydrolase-catalyzed Kinetic Resolution of 5-[4-(1-Hydroxyethyl)phenyl]-10,15,20-tris(pentafluorophenyl)porphyrin in Ionic Liquids. Chemistry Letters, 2008, 37, 90-91.	0.7	11
94	Ruthenium Complexes Bearing Axially Chiral Bipyridyls: The Mismatched Diastereomer Showed Red Circularly Polarized Phosphorescence. Chemistry - A European Journal, 2022, 28, .	1.7	10
95	Palladium Complexes of Carbazoleâ€Based Chalcogenaisophlorins: Synthesis, Structure, and Solidâ€6tate NIR Absorption Spectra. ChemPlusChem, 2017, 82, 1368-1371.	1.3	9
96	Unexpected Macrocyclic Multinuclear Zinc and Nickel Complexes that Function as Multitasking Catalysts for CO ₂ Fixations. Angewandte Chemie, 2019, 131, 10089-10093.	1.6	8
97	Unexpected Behavior of Diastereomeric Ions in the GasPhase: A Stimulus for Pondering on <i>e</i> Measurements by ESI-MS. Journal of the American Society for Mass Spectrometry, 2013, 24, 573-578.	1.2	7
98	Multifunctional Macrocyclic Receptors as Templates for Aromatic Amino Acids: A Rare Example of a Highly Selective Multiâ€Input Multiâ€Output Chemoâ€â€œLogic Gateâ€: ChemPlusChem, 2013, 78, 979-987.	1.3	6
99	Binaphthylâ€Bridged Pyrenophanes: Intense Circularly Polarized Luminescence Based on a <i>D</i> ₂ Symmetry Strategy. Angewandte Chemie, 2022, 134, .	1.6	6
100	Synthesis and electronic properties of carbazole-based core-modified diporphyrins showing near infrared absorption. Chemical Communications, 2020, 56, 15048-15051.	2.2	5
101	Synthetically useful variants of industrial lipases from Burkholderia cepacia and Pseudomonas fluorescens. Organic and Biomolecular Chemistry, 2017, 15, 8713-8719.	1.5	3
102	Palladium Complexes of Carbazole-Based Chalcogenaisophlorins: Synthesis, Structure, and Solid-State NIR Absorption Spectra. ChemPlusChem, 2017, 82, 1367-1367.	1.3	0
103	Frontispiece: Synthesis and Chiroptical Properties of Chiral Carbazoleâ€Based BODIPYs. Chemistry - A European Journal, 2020, 26, .	1.7	0