
Woo Jin Hyun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3429559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blade-Coatable Hexagonal Boron Nitride Ionogel Electrolytes for Scalable Production of Lithium Metal Batteries. ACS Energy Letters, 2022, 7, 1558-1565.	8.8	15
2	Screen-Printable Hexagonal Boron Nitride Ionogel Electrolytes for Mechanically Deformable Solid-State Lithium-Ion Batteries. Nano Letters, 2022, 22, 5372-5378.	4.5	9
3	Printable hexagonal boron nitride ionogels. Faraday Discussions, 2021, 227, 92-104.	1.6	14
4	Lithiumâ€lon Batteries: Layered Heterostructure Ionogel Electrolytes for Highâ€Performance Solidâ€State Lithiumâ€lon Batteries (Adv. Mater. 13/2021). Advanced Materials, 2021, 33, 2170099.	11.1	0
5	Layered Heterostructure Ionogel Electrolytes for Highâ€Performance Solidâ€6tate Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2007864.	11.1	51
6	Subâ€3 V ZnO Electrolyteâ€Gated Transistors and Circuits with Screenâ€Printed and Photoâ€Crosslinked Ion Gel Gate Dielectrics: New Routes to Improved Performance. Advanced Functional Materials, 2020, 30, 1902028.	7.8	49
7	Inkjet-printed, self-aligned organic Schottky diodes on imprinted plastic substrates. Flexible and Printed Electronics, 2020, 5, 015006.	1.5	15
8	Nanocomposite Ionogel Electrolytes for Solid‣tate Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2002135.	10.2	37
9	Concurrently Approaching Volumetric and Specific Capacity Limits of Lithium Battery Cathodes via Conformal Pickering Emulsion Graphene Coatings. Advanced Energy Materials, 2020, 10, 2001216.	10.2	33
10	Phase-Inversion Polymer Composite Separators Based on Hexagonal Boron Nitride Nanosheets for High-Temperature Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 8107-8114.	4.0	52
11	Ion onductive, Viscosityâ€Tunable Hexagonal Boron Nitride Nanosheet Inks. Advanced Functional Materials, 2019, 29, 1902245.	7.8	30
12	High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries. ACS Nano, 2019, 13, 9664-9672.	7.3	64
13	All-Printed, Self-Aligned Carbon Nanotube Thin-Film Transistors on Imprinted Plastic Substrates. ACS Applied Materials & Interfaces, 2018, 10, 15926-15932.	4.0	33
14	Open-channel microfluidic diodes based on two-tier junctions. Applied Physics Letters, 2018, 113, .	1.5	6
15	White Paper: Printable graphene inks stabilized with cellulosic polymers. MRS Bulletin, 2018, 43, 730-733.	1.7	8
16	Self-aligned inkjet printing of resistors and low-pass resistor–capacitor filters on roll-to-roll imprinted plastics with resistances ranging from 10 to 10 ⁶ Ω. Flexible and Printed Electronics, 2018, 3, 045003.	1.5	18
17	Printed, 1 V electrolyte-gated transistors based on poly(3-hexylthiophene) operating at >10 kHz on plastic. Applied Physics Letters, 2018, 113, .	1.5	19
18	Self-aligned capillarity-assisted printing of top-gate thin-film transistors on plastic. Flexible and Printed Electronics, 2018, 3, 035004.	1.5	13

Woo Jin Hyun

#	Article	IF	CITATIONS
19	Enhanced Sensitivity of Patterned Graphene Strain Sensors Used for Monitoring Subtle Human Body Motions. ACS Applied Materials & Interfaces, 2017, 9, 11176-11183.	4.0	75
20	Scalable, Selfâ€Aligned Printing of Flexible Graphene Microâ€Supercapacitors. Advanced Energy Materials, 2017, 7, 1700285.	10.2	167
21	Silver Transparent Electrodes Using Micro-Patterns Prepared from Polystyrene Colloidal Arrays. Journal of Nanoscience and Nanotechnology, 2017, 17, 5814-5817.	0.9	0
22	Novel microlens arrays with embedded Al ₂ O ₃ nanoparticles for enhancing efficiency and stability of flexible polymer light-emitting diodes. RSC Advances, 2016, 6, 65450-65458.	1.7	15
23	Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process. Journal of Materials Chemistry C, 2016, 4, 10445-10452.	2.7	14
24	Printed, Selfâ€Aligned Sideâ€Gate Organic Transistors with a Subâ€5 µm Gate–Channel Distance on Imprinteo Plastic Substrates. Advanced Electronic Materials, 2016, 2, 1600293.	^d 2.6	33
25	A Selfâ€Aligned Strategy for Printed Electronics: Exploiting Capillary Flow on Microstructured Plastic Surfaces. Advanced Electronic Materials, 2015, 1, 1500137.	2.6	43
26	Highly Stretchable and Wearable Graphene Strain Sensors with Controllable Sensitivity for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2015, 7, 6317-6324.	4.0	533
27	High-Resolution, High-Aspect Ratio Conductive Wires Embedded in Plastic Substrates. ACS Applied Materials & Interfaces, 2015, 7, 1841-1847.	4.0	39
28	Synthesis of poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate)-capped silver nanoparticles and their application to blue polymer light-emitting diodes. Korean Journal of Chemical Engineering, 2015, 32, 534-539.	1.2	5
29	Screen Printing of Highly Loaded Silver Inks on Plastic Substrates Using Silicon Stencils. ACS Applied Materials & Interfaces, 2015, 7, 12619-12624.	4.0	114
30	Allâ€Printed, Foldable Organic Thinâ€Film Transistors on Glassine Paper. Advanced Materials, 2015, 27, 7058-7064.	11.1	133
31	Highâ€Resolution Patterning of Graphene by Screen Printing with a Silicon Stencil for Highly Flexible Printed Electronics. Advanced Materials, 2015, 27, 109-115.	11.1	430
32	Pâ€157: Solutionâ€processed Light Extraction Structure and Metallic Grid Electrode for Enhanced Outcoupling of OLED. Digest of Technical Papers SID International Symposium, 2014, 45, 1571-1573.	0.1	1
33	Two-Dimensional TiO ₂ Honeycomb Structure for Enhanced Light Extraction from Polymer Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2014, 14, 8411-8415.	0.9	5
34	Enhanced Light Outcoupling Efficiency in Organic Light-Emitting Devices Using Irregular Microlenses Fabricated with 3D Colloidal Arrays. Science of Advanced Materials, 2014, 6, 2370-2377.	0.1	3
35	Foldable Graphene Electronic Circuits Based on Paper Substrates. Advanced Materials, 2013, 25, 4729-4734.	11.1	156
36	White emission from nano-structured top-emitting organic light-emitting diodes based on a blue emitting layer. Journal Physics D: Applied Physics, 2013, 46, 095107.	1.3	3

Woo Jin Hyun

#	Article	IF	CITATIONS
37	SOLED-2013-DT2E.4Solution-processed Internal and External Light Extraction Structure for Organic Light-emitting Diode. , 2013, , .		0
38	Solution-processible corrugated structure and scattering layer for enhanced light extraction from organic light-emitting diodes. Journal of Information Display, 2012, 13, 151-157.	2.1	2
39	Low-driving-voltage and colour-stable white organic light-emitting diodes with a cross-patterned multi-emissive layer. Journal Physics D: Applied Physics, 2012, 45, 025101.	1.3	3
40	Corrugated structure through a spin-coating process for enhanced light extraction from organic light-emitting diodes. Organic Electronics, 2012, 13, 579-585.	1.4	24
41	Pâ€175: Profile of Heterostructured Host for Phosphorescent OLED and its Application to the White Lighting Devices with Low Driving Voltage. Digest of Technical Papers SID International Symposium, 2011, 42, 1757-1759.	0.1	0
42	Twoâ€Dimensional TiO ₂ Inverse Opal with a Closed Top Surface Structure for Enhanced Light Extraction from Polymer Lightâ€Emitting Diodes. Advanced Materials, 2011, 23, 1846-1850.	11.1	45