Marco Mura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3429489/publications.pdf

Version: 2024-02-01

233125 361045 2,101 45 54 20 h-index citations g-index papers 57 57 57 2897 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bile acid aspiration and the development of bronchiolitis obliterans after lung transplantation. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 1144-1152.	0.4	290
2	Acute lung injury and cell death: how many ways can cells die?. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L632-L641.	1.3	197
3	Predicting survival in newly diagnosed idiopathic pulmonary fibrosis: a 3-year prospective study. European Respiratory Journal, 2012, 40, 101-109.	3.1	179
4	TNFα-Induced Long Pentraxin PTX3 Expression in Human Lung Epithelial Cells via JNK. Journal of Immunology, 2005, 175, 8303-8311.	0.4	166
5	Vascular endothelial growth factor and related molecules in acute lung injury. Journal of Applied Physiology, 2004, 97, 1605-1617.	1.2	165
6	Metabolomic Heterogeneity of Pulmonary Arterial Hypertension. PLoS ONE, 2014, 9, e88727.	1.1	111
7	Osteopontin lung gene expression is a marker of disease severity in pulmonary arterial hypertension. Respirology, 2019, 24, 1104-1110.	1.3	76
8	The presence of emphysema further impairs physiologic function in patients with idiopathic pulmonary fibrosis. Respiratory Care, 2006, 51, 257-65.	0.8	70
9	ANGIOTENSIN-CONVERTING ENZYME INHIBITOR CAPTOPRIL PREVENTS OLEIC ACID-INDUCED SEVERE ACUTE LUNG INJURY IN RATS. Shock, 2007, 28, 106-111.	1.0	66
10	Comprehensive gene expression profiling identifies distinct and overlapping transcriptional profiles in non-specific interstitial pneumonia and idiopathic pulmonary fibrosis. Respiratory Research, 2018, 19, 153.	1.4	66
11	The early responses of VEGF and its receptors during acute lung injury: implication of VEGF in alveolar epithelial cell survival. Critical Care, 2006, 10, R130.	2.5	65
12	HRCT and histopathological evaluation of fibrosis and tissue destruction in IPF associated with pulmonary emphysema. Respiratory Medicine, 2008, 102, 1753-1761.	1.3	54
13	Gene Expression Profiling in the Lungs of Patients With Pulmonary Hypertension Associated With Pulmonary Fibrosis. Chest, 2012, 141, 661-673.	0.4	49
14	Src tyrosine kinase inhibition prevents pulmonary ischemia–reperfusion-induced acute lung injury. Intensive Care Medicine, 2012, 38, 894-905.	3.9	49
15	Functional Predictors of Exertional Dyspnea, 6-min Walking Distance and HRCT Fibrosis Score in Idiopathic Pulmonary Fibrosis. Respiration, 2006, 73, 495-502.	1.2	44
16	High-volume ventilation induces pentraxin 3 expression in multiple acute lung injury models in rats. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L144-L153.	1.3	42
17	Functions of Type II Pneumocyte-Derived Vascular Endothelial Growth Factor in Alveolar Structure, Acute Inflammation, and Vascular Permeability. American Journal of Pathology, 2010, 176, 1725-1734.	1.9	42
18	PTX3 as a potential biomarker of acute lung injury: supporting evidence from animal experimentation. Intensive Care Medicine, 2010, 36, 356-364.	3.9	40

#	Article	IF	CITATIONS
19	A simple dyspnoea scale as part of the assessment to predict outcome across chronic interstitial lung disease. Respirology, 2017, 22, 501-507.	1.3	35
20	Review: New perspectives in the treatment of idiopathic pulmonary fibrosis. Therapeutic Advances in Respiratory Disease, 2008, 2, 75-93.	1.0	25
21	Anti-Human Tissue Factor Antibody Ameliorated Intestinal Ischemia Reperfusion-Induced Acute Lung Injury in Human Tissue Factor Knock-In Mice. PLoS ONE, 2008, 3, e1527.	1.1	21
22	Inflammatory activity is still present in the advanced stages of idiopathic pulmonary fibrosis. Respirology, 2005, 10, 609-614.	1.3	19
23	Metabolic syndrome and risk of pulmonary involvement. Respiratory Medicine, 2010, 104, 47-51.	1.3	18
24	Bone Marrow Cells Expressing Clara Cell Secretory Protein Increase Epithelial Repair After Ablation of Pulmonary Clara Cells. Molecular Therapy, 2013, 21, 1251-1258.	3.7	15
25	Depletion of Bone Marrow CCSP-Expressing Cells Delays Airway Regeneration. Molecular Therapy, 2015, 23, 561-569.	3.7	15
26	Longitudinal functional changes with clinically significant radiographic progression in idiopathic pulmonary fibrosis: are we following the right parameters?. Respiratory Research, 2020, 21, 119.	1.4	15
27	Multi-dimensional scores to predict mortality in patients with idiopathic pulmonary fibrosis undergoing lung transplantation assessment. Respiratory Medicine, 2017, 125, 65-71.	1.3	13
28	Bullous emphysema versus diffuse emphysema: a functional and radiologic comparison. Respiratory Medicine, 2005, 99, 171-178.	1.3	11
29	INTESTINAL ISCHEMIA-REPERFUSION-INDUCED ACUTE LUNG INJURY AND ONCOTIC CELL DEATH IN MULTIPLE ORGANS. Shock, 2007, 28, 227-238.	1.0	9
30	Early Decline in Six-Minute Walk Distance from the Time of Diagnosis Predicts Clinical Worsening in Pulmonary Arterial Hypertension. Respiration, 2015, 89, 365-373.	1.2	9
31	Multi-dimensional Assessment of IPF Across a Wide Range of Disease Severity. Lung, 2018, 196, 707-713.	1.4	9
32	Multi-dimensional indices to stage idiopathic pulmonary fibrosis: a systematic review. Sarcoidosis Vasculitis and Diffuse Lung Diseases, 2014, 31, 8-18.	0.2	9
33	Assessing the Therapeutic Response to Pirfenidone in Idiopathic Pulmonary Fibrosis: Can We Do Better than with Forced Vital Capacity Alone?. Lung, 2017, 195, 101-105.	1.4	8
34	Cluster analysis of transcriptomic datasets to identify endotypes of idiopathic pulmonary fibrosis. Thorax, 2023, 78, 551-558.	2.7	8
35	Does Technetium-99m Diethylenetriaminepentaacetate Clearance Predict the Clinical Course of Idiopathic Pulmonary Fibrosis?. Canadian Respiratory Journal, 2004, 11, 477-479.	0.8	7
36	Successful Treatment of Fibrosing Organising Pneumonia Causing Respiratory Failure with Mycophenolic Acid. Respiration, 2016, 92, 279-282.	1.2	7

#	Article	IF	Citations
37	Pulmonary Artery Abnormalities in Ex-smokers with and without Airflow Obstruction. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2016, 13, 224-234.	0.7	7
38	Associated Pulmonary Hypertension Is an Independent Contributor to Exercise Intolerance in Chronic Fibrosing Interstitial Pneumonias. Respiration, 2018, 96, 543-551.	1.2	7
39	Implementing an interstitial lung disease clinic improves survival without increasing health care resource utilization. Pulmonary Pharmacology and Therapeutics, 2019, 56, 94-99.	1.1	7
40	The CALIPER-Revised Version of the Composite Physiologic Index is a Better Predictor of Survival in IPF than the Original Version. Lung, 2020, 198, 169-172.	1.4	7
41	Fat-Free Mass Index Controlled for Age and Sex and Malnutrition Are Predictors of Survival in Interstitial Lung Disease. Respiration, 2021, 100, 379-386.	1.2	7
42	Use of nintedanib in interstitial lung disease other than idiopathic pulmonary fibrosis: much caution is warranted. Pulmonary Pharmacology and Therapeutics, 2021, 66, 101987.	1.1	6
43	A 53-year-old man with dyspnoea, respiratory failure, consistent with infliximab-induced acute interstitial pneumonitis after an accelerated induction dosing schedule. BMJ Case Reports, 2017, 2017, bcr-2017-219956.	0.2	6
44	Interstitial Lung Disease, Body Mass Index, Energy Expenditure and Malnutrition—a Review. Current Pulmonology Reports, 2017, 6, 70-74.	0.5	5
45	Tobacco Worker's Lung: A Neglected Subtype of Hypersensitivity Pneumonitis. Lung, 2021, 199, 13-19.	1.4	5
46	Nutrition implications of intrinsic restrictive lung disease. Nutrition in Clinical Practice, 2022, 37, 239-255.	1.1	5
47	Exercise capacity and its relationship with body composition and nutrition status in patients with interstitial lung disease. Nutrition in Clinical Practice, 2021, 36, 891-898.	1.1	4
48	Digital quantification of p16-positive foci in fibrotic interstitial lung disease is associated with a phenotype of idiopathic pulmonary fibrosis with reduced survival. Respiratory Research, 2022, 23, .	1.4	3
49	Bronchiolitis obliterans syndrome as manifestation of lung GVHD: Not the only one. Respirology, 2019, 24, 702-702.	1.3	2
50	Invasive pulmonary aspergillosis in an immunocompetent, heavy smoker of marijuana with emphysema and chronic obstructive pulmonary disease. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2020, , 1-4.	0.2	2
51	TPMT and HLA-DQA1-HLA-DRB genetic profiling to guide the use of azathioprine in the treatment of interstitial lung disease: First experience. Pulmonary Pharmacology and Therapeutics, 2021, 66, 101988.	1.1	2
52	6-minute walk distance as a predictor of outcome in idiopathic pulmonary fibrosis. European Respiratory Journal, 2014, 43, 1822-1823.	3.1	1
53	Exercise Testing in Idiopathic Pulmonary Fibrosis: Expanding Our Options. Respiration, 2021, 100, 568-570.	1.2	1
54	Validation of the risk stratification score in idiopathic pulmonary fibrosis: study protocol of a prospective, multi-centre, observational, 3-year clinical trial. BMC Pulmonary Medicine, 2021, 21, 396.	0.8	0