Mikhail Pashchanka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3429424/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Origin of self-organisation in porous anodic alumina films derived from analogy with Rayleigh–Bénard convection cells. Journal of Materials Chemistry, 2011, 21, 18761.	6.7	74
2	Molecular based, chimie douce approach to 0D and 1D indium oxide nanostructures. Evaluation of their sensing properties towards CO and H2. Journal of Materials Chemistry, 2010, 20, 8311.	6.7	46
3	Experimental validation of the novel theory explaining self-organization in porous anodic alumina films. Physical Chemistry Chemical Physics, 2013, 15, 7070.	2.8	40
4	Self-Ordering Regimes of Porous Anodic Alumina Layers Formed in Highly Diluted Sulfuric Acid Electrolytes. Journal of Physical Chemistry C, 2016, 120, 14590-14596.	3.1	29
5	Conceptual Progress for Explaining and Predicting Self-Organization on Anodized Aluminum Surfaces. Nanomaterials, 2021, 11, 2271.	4.1	21
6	Polymerâ€Derived SiOC Nanotubes and Nanorods via a Template Approach. European Journal of Inorganic Chemistry, 2009, 2009, 3496-3506.	2.0	18
7	Porous alumina-metallic Pt/Pd, Cr or Al layered nanocoatings with fully controlled variable interference colors. Nanoscale, 2014, 6, 12877-12883.	5.6	17
8	Controlled synthesis and characterisation of MgOnanoparticles, thin films and polycrystalline nanorods derived from a Mg(ii) single source precursor. Journal of Materials Chemistry, 2010, 20, 957-963.	6.7	16
9	Evidence for electrohydrodynamic convection as a source of spontaneous self-ordering in porous anodic alumina films. Physical Chemistry Chemical Physics, 2016, 18, 6946-6953.	2.8	15
10	Formation of Porous Anodic Alumina under Unstable Electroconvection Flow Regimes: A Case Study of Tartronic Acid Electrolyte. Journal of Physical Chemistry C, 2017, 121, 23683-23692.	3.1	9
11	Multilevel self-organization on anodized aluminium: discovering hierarchical honeycomb structures from nanometre to sub-millimetre scale. Physical Chemistry Chemical Physics, 2020, 22, 15867-15875.	2.8	7
12	Controllable Reduction of Anionic Contamination in Degradable Amorphous Anodic Alumina Nanoporous Membranes. ACS Applied Nano Materials, 2020, 3, 10531-10542.	5.0	5
13	Long-Range Hexagonal Pore Ordering as the Key to Controlling SERS Efficiency in Substrates Based on Porous Alumina. Journal of Physical Chemistry C, 2020, 124, 25931-25943.	3.1	5
14	Synergistic Physical and Chemical Enhancement Effects Observed on Surface-Enhanced Raman Spectroscopy Substrates of Silver-Coated, Barrier-Type Anodic Alumina. Journal of Physical Chemistry C, 2020, 124, 13316-13328.	3.1	3
15	A Strategy towards Light-Absorbing Coatings Based on Optically Black Nanoporous Alumina with Tailored Disorder. Materials, 2021, 14, 5827.	2.9	3