
Maruti Kumar Mudunuru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3429056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep learning to estimate permeability using geophysical data. Advances in Water Resources, 2022, 167, 104272.	3.8	3
2	Physics-informed machine learning models for predicting the progress of reactive-mixing. Computer Methods in Applied Mechanics and Engineering, 2021, 374, 113560.	6.6	3
3	A comparative study of machine learning models for predicting the state of reactive mixing. Journal of Computational Physics, 2021, 432, 110147.	3.8	9
4	Machine learning to identify geologic factors associated with production in geothermal fields: a case-study using 3D geologic data, Brady geothermal field, Nevada. Geothermal Energy, 2021, 9, .	1.9	17
5	Machine learning to discover mineral trapping signatures due to CO2 injection. International Journal of Greenhouse Gas Control, 2021, 109, 103382.	4.6	11
6	Explore Spatioâ€Temporal Learning of Large Sample Hydrology Using Graph Neural Networks. Water Resources Research, 2021, 57, e2021WR030394.	4.2	27
7	PFLOTRAN-SIP: A PFLOTRAN Module for Simulating Spectral-Induced Polarization of Electrical Impedance Data. Energies, 2020, 13, 6552.	3.1	2
8	Surrogate Models for Estimating Failure in Brittle and Quasi-Brittle Materials. Applied Sciences (Switzerland), 2019, 9, 2706.	2.5	11
9	Unsupervised machine learning based on non-negative tensor factorization for analyzing reactive-mixing. Journal of Computational Physics, 2019, 395, 85-104.	3.8	28
10	Reduced-order modeling through machine learning and graph-theoretic approaches for brittle fracture applications. Computational Materials Science, 2019, 157, 87-98.	3.0	33
11	Using Machine Learning to Discern Eruption in Noisy Environments: A Case Study Using CO2â€Driven Coldâ€Water Geyser in Chimayó, New Mexico. Seismological Research Letters, 2019, 90, 591-603.	1.9	13
12	Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems. Statistical Analysis and Data Mining, 2017, 10, 326-342.	2.8	10
13	Regression-based reduced-order models to predict transient thermal output for enhanced geothermal systems. Geothermics, 2017, 70, 192-205.	3.4	20
14	Scalable time-series feature engineering framework to understand multiphase flow using acoustic signals. Proceedings of Meetings on Acoustics, 2017, , .	0.3	3
15	Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions. Continuum Mechanics and Thermodynamics, 2016, 28, 1847-1885.	2.2	20
16	On enforcing maximum principles and achieving element-wise species balance for advection–diffusion–reaction equations under the finite element method. Journal of Computational Physics, 2016, 305, 448-493.	3.8	22
17	A numerical framework for diffusion-controlled bimolecular-reactive systems to enforce maximum principles and the non-negative constraint. Journal of Computational Physics, 2013, 253, 278-307.	3.8	24
18	A framework for coupled deformation–diffusion analysis with application to degradation/healing. International Journal for Numerical Methods in Engineering, 2012, 89, 1144-1170.	2.8	14