Fuminori Tanihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3428954/publications.pdf

Version: 2024-02-01

430874 477307 1,130 82 18 29 citations h-index g-index papers 82 82 82 981 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Somatic cell reprogramming-free generation of genetically modified pigs. Science Advances, 2016, 2, e1600803.	10.3	96
2	Generation of Live Piglets from Cryopreserved Oocytes for the First Time Using a Defined System for In Vitro Embryo Production. PLoS ONE, 2014, 9, e97731.	2.5	71
3	Generation of Live Piglets for the First Time Using Sperm Retrieved from Immature Testicular Tissue Cryopreserved and Grafted into Nude Mice. PLoS ONE, 2013, 8, e70989.	2.5	65
4	Effect of trehalose on DNA integrity of freeze-dried boar sperm, fertilization, and embryo development after intracytoplasmic sperm injection. Theriogenology, 2013, 80, 1033-1044.	2.1	52
5	Generation of a TP53-modified porcine cancer model by CRISPR/Cas9-mediated gene modification in porcine zygotes via electroporation. PLoS ONE, 2018, 13, e0206360.	2.5	46
6	Chlorogenic acid supplementation during in vitro maturation improves maturation, fertilization and developmental competence of porcine oocytes. Reproduction in Domestic Animals, 2017, 52, 969-975.	1.4	45
7	Comparison of cytoskeletal integrity, fertilization and developmental competence of oocytes vitrified before or after in vitro maturation in a porcine model. Cryobiology, 2013, 67, 287-292.	0.7	41
8	Effects of concentration of CRISPR/Cas9 components on genetic mosaicism in cytoplasmic microinjected porcine embryos. Journal of Reproduction and Development, 2019, 65, 209-214.	1.4	35
9	Melatonin Supplementation During <i>In Vitro</i> Maturation and Development Supports the Development of Porcine Embryos. Reproduction in Domestic Animals, 2015, 50, 1054-1058.	1.4	32
10	Comparison of Ethylene Glycol and Propylene Glycol for the Vitrification of Immature Porcine Oocytes. Journal of Reproduction and Development, 2013, 59, 378-384.	1.4	29
11	Efficient generation of GGTA1-deficient pigs by electroporation of the CRISPR/Cas9 system into in vitro-fertilized zygotes. BMC Biotechnology, 2020, 20, 40.	3.3	29
12	Generation of <i>CD163-</i> edited pig via electroporation of the CRISPR/Cas9 system into porcine <i>in vitro-</i> fertilized zygotes. Animal Biotechnology, 2021, 32, 147-154.	1.5	29
13	Generation of viable <i>PDX1</i> geneâ€edited founder pigs as providers of nonmosaics. Molecular Reproduction and Development, 2020, 87, 471-481.	2.0	28
14	Effects of voltage strength during electroporation on the development and quality of in vitroâ€produced porcine embryos. Reproduction in Domestic Animals, 2018, 53, 313-318.	1.4	26
15	Genome mutation after introduction of the gene editing by electroporation of Cas9 protein (GEEP) system in matured oocytes and putative zygotes. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 237-242.	1.5	24
16	Generation of <i><scp>PDX</scp>â€1</i> mutant porcine blastocysts by introducing <scp>CRISPR</scp> /Cas9â€system into porcine zygotes via electroporation. Animal Science Journal, 2019, 90, 55-61.	1.4	23
17	Genome mutation after the introduction of the gene editing by electroporation of Cas9 protein (GEEP) system into bovine putative zygotes. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 598-603.	1.5	22
18	Comparison of the effects of introducing the CRISPR/Cas9 system by microinjection and electroporation into porcine embryos at different stages. BMC Research Notes, 2021, 14, 7.	1.4	22

#	Article	IF	CITATIONS
19	Effects of electroporation treatment using different concentrations of Cas9 protein with gRNA targeting $\langle i \rangle$ Myostatin $\langle i \rangle$ ($\langle i \rangle$ MSTN $\langle i \rangle$) genes on the development and gene editing of porcine zygotes. Animal Science Journal, 2020, 91, e13386.	1.4	20
20	Normal reproductive development of pigs produced using sperm retrieved from immature testicular tissue cryopreserved and grafted into nude mice. Theriogenology, 2014, 82, 325-331.	2.1	18
21	One-Step Generation of Multiple Gene-Edited Pigs by Electroporation of the CRISPR/Cas9 System into Zygotes to Reduce Xenoantigen Biosynthesis. International Journal of Molecular Sciences, 2021, 22, 2249.	4.1	18
22	Effects of (â^')â€Epigallocatechin Gallate on the Motility and Penetrability of Frozenâ€"Thawed Boar Spermatozoa Incubated in the Fertilization Medium. Reproduction in Domestic Animals, 2012, 47, 880-886.	1.4	17
23	Current status of the application of gene editing in pigs. Journal of Reproduction and Development, 2021, 67, 177-187.	1.4	17
24	Evaluation of Zona Pellucida Function for Sperm Penetration During <i>In Vitro</i> Fertilization in Pigs. Journal of Reproduction and Development, 2013, 59, 385-392.	1.4	16
25	Effects of chlorogenic acid and caffeic acid on the quality of frozenâ€thawed boar sperm. Reproduction in Domestic Animals, 2018, 53, 1600-1604.	1.4	15
26	Motility and fertility of boar semen after liquid preservation at $5\hat{A}^{\circ}$ <scp>C</scp> for more than 2 weeks. Animal Science Journal, 2013, 84, 600-606.	1.4	13
27	Assessment of canine ovaries autografted to various body sites. Theriogenology, 2012, 77, 131-138.	2.1	12
28	The effect of relaxin supplementation of in vitro maturation medium on the development of cat oocytes obtained from ovaries stored at $4\hat{A}^{\circ}$ C. Reproductive Biology, 2013, 13, 122-126.	1.9	12
29	Development and subsequent cryotolerance of domestic cat embryos cultured in serum-free and serum-containing media. Cryobiology, 2011, 63, 170-174.	0.7	11
30	Effect of ferulic acid supplementation on the developmental competence of porcine embryos during <i>in vitro</i> maturation. Journal of Veterinary Medical Science, 2018, 80, 1007-1011.	0.9	10
31	One-step genome editing of porcine zygotes through the electroporation of a CRISPR/Cas9 system with two guide RNAs. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 614-621.	1.5	10
32	Evaluation of multiple gene targeting in porcine embryos by the CRISPR/Cas9 system using electroporation. Molecular Biology Reports, 2020, 47, 5073-5079.	2.3	10
33	Aberrant levels of DNA methylation and H3K9 acetylation in the testicular cells of crossbred cattle–yak showing infertility. Reproduction in Domestic Animals, 2022, 57, 304-313.	1.4	10
34	Normal reproductive development of offspring derived by intracytoplasmic injection of porcine sperm grown in host mice. Theriogenology, 2012, 78, 898-906.	2.1	9
35	Roles of the zona pellucida and functional exposure of the spermâ€egg fusion factor â€~scp>lZUMO' during <i>in vitro</i> fertilization in pigs. Animal Science Journal, 2014, 85, 395-404.	1.4	9
36	Effects of chlorogenic acid (<scp>CGA</scp>) supplementation during inÂvitro maturation culture on the development and quality of porcine embryos with electroporation treatment after inÂvitro fertilization. Animal Science Journal, 2018, 89, 1207-1213.	1.4	9

#	Article	IF	Citations
37	The Relationship between Embryonic Development and the Efficiency of Target Mutations in Porcine Endogenous Retroviruses (PERVs) Pol Genes in Porcine Embryos. Animals, 2019, 9, 593.	2.3	9
38	Effects of skim-milk supplementation on the quality and penetrating ability of boar semen after long-term preservation at 15 ${\hat {\sf A}}^{\circ}{\sf C}$. Acta Veterinaria Hungarica, 2014, 62, 106-116.	0.5	8
39	Generation of mutant pigs by lipofection-mediated genome editing in embryos. Scientific Reports, 2021, 11, 23806.	3.3	8
40	Improved developmental ability of porcine oocytes grown in nude mice after fusion with cytoplasmic fragments prepared by centrifugation: A model for utilization of primordial oocytes. Theriogenology, 2013, 80, 887-892.	2.1	7
41	Fertilization Ability of Porcine Oocytes Reconstructed from Ooplasmic Fragments Produced and Characterized after Serial Centrifugations. Journal of Reproduction and Development, 2013, 59, 549-556.	1.4	7
42	<i>In vitro</i> development of <scp>OPU</scp> â€derived bovine embryos cultured either individually or in groups with the silk protein sericin and the viability of frozenâ€thawed embryos after transfer. Animal Science Journal, 2015, 86, 661-665.	1.4	7
43	Abnormal functions of Leydig cells in crossbred cattle–yak showing infertility. Reproduction in Domestic Animals, 2020, 55, 209-216.	1.4	7
44	Lipofection-Mediated Introduction of CRISPR/Cas9 System into Porcine Oocytes and Embryos. Animals, 2021, 11, 578.	2.3	7
45	Effects of epigallocatechin-3-gallate on the developmental competence of parthenogenetic embryos in the pig. Italian Journal of Animal Science, 2010, 9, e73.	1.9	6
46	Follicle Formation in the Canine Ovary After Autografting to a Peripheral Site. Reproduction in Domestic Animals, 2012, 47, e16-21.	1.4	6
47	Sensitivity of the meiotic stage to hyperthermia during in vitro maturation of porcine oocytes. Acta Veterinaria Hungarica, 2017, 65, 115-123.	0.5	6
48	Introduction of a point mutation in the KRAS gene of in vitro fertilized porcine zygotes via electroporation of the CRISPR/Cas9 system with singleâ€stranded oligodeoxynucleotides. Animal Science Journal, 2021, 92, e13534.	1.4	6
49	Effects of Tris (hydroxymethyl) aminomethane on the quality of frozen-thawed boar spermatozoa. Acta Veterinaria Hungarica, 2019, 67, 106-114.	0.5	5
50	Hypothermic storage of porcine zygotes in serum supplemented with chlorogenic acid. Reproduction in Domestic Animals, 2019, 54, 750-755.	1.4	5
51	Effect of Roscovitine Pretreatment on the Meiotic Maturation of Bovine Oocytes and their Subsequent Development after Somatic Cell Nuclear Transfer. Journal of Animal and Veterinary Advances, 2010, 9, 2848-2853.	0.1	5
52	Curcumin supplementation in the maturation medium improves the maturation, fertilisation and developmental competence of porcine oocytes. Acta Veterinaria Hungarica, 2020, 68, 298-304.	0.5	5
53	Effects of cryoprotectant agents and equilibration methods on developmental competence of porcine oocytes. Cryo-Letters, 2011, 32, 410-4.	0.3	5
54	Effects of Antifreeze Protein Supplementation on the Development of Porcine Morulae Stored at Hypothermic Temperatures. Cryo-Letters, 2018, 39, 131-136.	0.3	5

#	Article	IF	Citations
55	Treatment with protein kinase C activator is effective for improvement of male pronucleus formation and further embryonic development of sperm-injected oocytes in pigs. Theriogenology, 2016, 85, 703-708.	2.1	4
56	Effects of parity and season on pregnancy rates after the transfer of embryos to repeat-breeder Japanese Black beef cattle. Archives Animal Breeding, 2016, 59, 45-49.	1.4	4
57	Zona pellucida treatment before CRISPR/Cas9â€mediated genome editing of porcine zygotes. Veterinary Medicine and Science, 2022, 8, 164-169.	1.6	4
58	Effects of the timing of electroporation during in vitro maturation on triple gene editing in porcine embryos using CRISPR/Cas9 system. Veterinary and Animal Science, 2022, 16, 100241.	1.5	4
59	Effects of individual or inâ€combination antioxidant supplementation during in vitro maturation culture on the developmental competence and quality of porcine embryos. Reproduction in Domestic Animals, 2022, 57, 314-320.	1.4	4
60	Formation of an Antral Follicle–like Structure of Bovine Cumulus–Oocyte Complexes Embedded Individually or in Groups in Collagen Gels. Reproduction in Domestic Animals, 2011, 46, 423-427.	1.4	3
61	Effects of duration of electric pulse on in vitro development of cloned cat embryos with human artificial chromosome vector. Reproduction in Domestic Animals, 2016, 51, 1039-1043.	1.4	3
62	Follicular development of canine ovaries stimulated by a combination treatment of eCG and hCG. Veterinary Medicine and Science, 2018, 4, 333-340.	1.6	3
63	Timing and duration of lipofection-mediated CRISPR/Cas9 delivery into porcine zygotes affect gene-editing events. BMC Research Notes, 2021, 14, 389.	1.4	3
64	Viability and developmental potential of porcine blastocysts preserved for short term in a chemically defined medium at ambient temperature. Reproduction in Domestic Animals, 2022, 57, 556-563.	1.4	3
65	CHARACTERISTICS AND FERTILITY OF SUMATRAN TIGER SPERMATOZOA CRYOPRESERVED WITH DIFFERENT SUGARS. Cryo-Letters, 2016, 37, 264-271.	0.3	3
66	Shortâ€term preservation of porcine zygotes at ambient temperature using a chemically defined medium. Animal Science Journal, 2022, 93, e13711.	1.4	3
67	Triple gene editing in porcine embryos using electroporation alone or in combination with microinjection. Veterinary World, 2022, 15, 496-501.	1.7	3
68	Disruption of cell proliferation and apoptosis balance in the testes of crossbred cattleâ€yaks affects spermatogenic cell fate and sterility. Reproduction in Domestic Animals, 0, , .	1.4	3
69	<i>In Vitro</i> Maturation and Development of Porcine Oocytes Cultured in a Straw or Dish Using a Portable Incubator with a CO ₂ Chamber. Reproduction in Domestic Animals, 2009, 45, 619-24.	1.4	2
70	Comparison of activation ability between feline and bovine oocytes. Acta Veterinaria Hungarica, 2013, 61, 491-494.	0.5	2
71	Comparative Effects of Different Dosages of hCG on Follicular Development in Postpartum Dairy Cows With Cystic Ovarian Follicles. Frontiers in Veterinary Science, 2018, 5, 130.	2.2	2
72	The effects of electroporation on viability and quality of <i>in vivo</i> -derived bovine blastocysts. Journal of Reproduction and Development, 2019, 65, 475-479.	1.4	2

#	Article	IF	CITATIONS
73	Relationship among ovarian follicular status, developmental competence of oocytes, and antiâ∈Mþllerian hormone levels: A comparative study in Japanese wild boar crossbred gilts and Large White gilts. Animal Science Journal, 2019, 90, 712-718.	1.4	2
74	Vaginal stimulation enhances ovulation of queen ovaries treated using a combination of eCG and hCG. Veterinary Medicine and Science, 2021, 7, 1569-1574.	1.6	2
75	Improvement of the in vitro fertilization and embryo development using frozen–thawed spermatozoa of microminipigs. Archives Animal Breeding, 2021, 64, 265-271.	1.4	2
76	Gene editing in porcine embryos using a combination of electroporation and transfection methods. Reproduction in Domestic Animals, 2022, 57, 1136-1142.	1.4	2
77	Cell cycle analysis and interspecies nuclear transfer of cat cells treated with chemical inhibitors. Acta Veterinaria Hungarica, 2014, 62, 233-242.	0.5	1
78	Novel method utilizing bisulfite conversion with dual amplification \hat{s} -refractory mutation system polymerase chain reaction to detect circulating pancreatic $\hat{l}^2\hat{a}$ -cell $scp>cfDNA$. Journal of Diabetes Investigation, 2022, , .	2.4	1
79	Effects of dibutyryl cyclic adenosine monophosphate and human chorionic gonadotropin on the formation of antral follicle-like structures by bovine cumulus—oocyte complexes. Acta Veterinaria Hungarica, 2015, 63, 485-498.	0.5	0
80	Formation of an Antral Follicle-Like Structure by Bovine Cumulus-Oocyte Complexes Embedded with Fragmin/Protamine Microparticles. Animal Biotechnology, 2015, 26, 273-275.	1.5	0
81	The optimal period of Ca-EDTA treatment for parthenogenetic activation of porcine oocytes during maturation culture. Journal of Veterinary Medical Science, 2016, 78, 1019-1023.	0.9	0
82	Chlorogenic acid and insulin–transferrin–selenium supplementation during in vitro maturation enhances the developmental competence of interspecies chimera blastocysts following cell injection. Journal of Applied Animal Research, 2021, 49, 486-491.	1.2	0