Weijie Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3428683/publications.pdf

Version: 2024-02-01

68	2,052	25	37
papers	citations	h-index	g-index
68	68	68	849
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Iterative Detection for Orthogonal Time Frequency Space Modulation With Unitary Approximate Message Passing. IEEE Transactions on Wireless Communications, 2022, 21, 714-725.	6.1	53
2	Cross Domain Iterative Detection for Orthogonal Time Frequency Space Modulation. IEEE Transactions on Wireless Communications, 2022, 21, 2227-2242.	6.1	47
3	Faster-Than-Nyquist Asynchronous NOMA Outperforms Synchronous NOMA. IEEE Journal on Selected Areas in Communications, 2022, 40, 1128-1145.	9.7	17
4	Integrated Sensing and Communication Waveform Design With Sparse Vector Coding: Low Sidelobes and Ultra Reliability. IEEE Transactions on Vehicular Technology, 2022, 71, 4489-4494.	3.9	22
5	A Novel ISAC Transmission Framework Based on Spatially-Spread Orthogonal Time Frequency Space Modulation. IEEE Journal on Selected Areas in Communications, 2022, 40, 1854-1872.	9.7	45
6	Off-Grid Channel Estimation With Sparse Bayesian Learning for OTFS Systems. IEEE Transactions on Wireless Communications, 2022, 21, 7407-7426.	6.1	54
7	On the Potential of Spatially-Spread Orthogonal Time Frequency Space Modulation for ISAC Transmissions. , 2022, , .		5
8	Learning-Based Predictive Beamforming for Integrated Sensing and Communication in Vehicular Networks. IEEE Journal on Selected Areas in Communications, 2022, 40, 2317-2334.	9.7	40
9	Achieving the Performance Bounds for Sensing and Communications in Perceptive Networks: Optimal Bandwidth Allocation. IEEE Wireless Communications Letters, 2022, 11, 1835-1839.	3.2	7
10	Multi-Vehicle Tracking and ID Association Based on Integrated Sensing and Communication Signaling. IEEE Wireless Communications Letters, 2022, 11, 1960-1964.	3.2	6
11	Downlink OTFS Non-Orthogonal Multiple Access Receiver Design based on Cross-Domain Detection. , 2022, , .		8
12	Cycle-Slip Detection and Correction for Carrier Phase Synchronization in Coded Systems. IEEE Communications Letters, 2021, 25, 113-116.	2.5	0
13	Channel Estimation and User Identification With Deep Learning for Massive Machine-Type Communications. IEEE Transactions on Vehicular Technology, 2021, 70, 10709-10722.	3.9	5
14	Bypassing Channel Estimation for OTFS Transmission: An Integrated Sensing and Communication Solution., 2021,,.		8
15	Bayesian Predictive Beamforming for Vehicular Networks: A Low-Overhead Joint Radar-Communication Approach. IEEE Transactions on Wireless Communications, 2021, 20, 1442-1456.	6.1	113
16	On the Achievable Rates of Uplink NOMA with Asynchronized Transmission., 2021,,.		4
17	Location-Aware Predictive Beamforming for UAV Communications: A Deep Learning Approach. IEEE Wireless Communications Letters, 2021, 10, 668-672.	3.2	31
18	Transmitter and Receiver Window Designs for Orthogonal Time-Frequency Space Modulation. IEEE Transactions on Communications, 2021, 69, 2207-2223.	4.9	78

#	Article	IF	Citations
19	On the Performance of Coded OTFS Modulation over High-Mobility Channels. , 2021, , .		3
20	Performance Analysis and Window Design for Channel Estimation of OTFS Modulation. , 2021, , .		5
21	Vector Approximate Message Passing Based Iterative Receiver for OTFS System., 2021, , .		5
22	Hybrid MAP and PIC Detection for OTFS Modulation. IEEE Transactions on Vehicular Technology, 2021, 70, 7193-7198.	3.9	56
23	A Tutorial to Orthogonal Time Frequency Space Modulation for Future Wireless Communications. , 2021, , .		5
24	Pilot Design and Optimization for OTFS Modulation. IEEE Wireless Communications Letters, 2021, 10, 1742-1746.	3.2	23
25	Orthogonal Time-Frequency Space Modulation: A Promising Next-Generation Waveform. IEEE Wireless Communications, 2021, 28, 136-144.	6.6	208
26	Data-Aided Channel Estimation for OTFS Systems With a Superimposed Pilot and Data Transmission Scheme. IEEE Wireless Communications Letters, 2021, 10, 1954-1958.	3.2	74
27	Performance Analysis of Coded OTFS Systems Over High-Mobility Channels. IEEE Transactions on Wireless Communications, 2021, 20, 6033-6048.	6.1	83
28	Integrated Sensing and Communication-Assisted Orthogonal Time Frequency Space Transmission for Vehicular Networks. IEEE Journal on Selected Topics in Signal Processing, 2021, 15, 1515-1528.	7.3	103
29	A New Off-grid Channel Estimation Method with Sparse Bayesian Learning for OTFS Systems. , 2021, , .		13
30	Iterative Receiver Design for FTN Signaling Aided Sparse Code Multiple Access. IEEE Transactions on Wireless Communications, 2020, 19, 915-928.	6.1	57
31	Joint Data and Active User Detection for Grant-free FTN-NOMA in Dynamic Networks. , 2020, , .		3
32	Learning-Based Predictive Beamforming for UAV Communications With Jittering. IEEE Wireless Communications Letters, 2020, 9, 1970-1974.	3.2	44
33	Joint Channel Estimation and Equalization for Index-Modulated Spectrally Efficient Frequency Division Multiplexing Systems. IEEE Transactions on Communications, 2020, 68, 6230-6244.	4.9	15
34	Radar-Assisted Predictive Beamforming for Vehicular Links: Communication Served by Sensing. IEEE Transactions on Wireless Communications, 2020, 19, 7704-7719.	6.1	175
35	Radar-Assisted Predictive Beamforming for Vehicle-to-Infrastructure Links. , 2020, , .		6
36	A Simple Variational Bayes Detector for Orthogonal Time Frequency Space (OTFS) Modulation. IEEE Transactions on Vehicular Technology, 2020, 69, 7976-7980.	3.9	127

#	Article	IF	Citations
37	Time-Domain vs. Frequency-Domain Equalization for FTN Signaling. IEEE Transactions on Vehicular Technology, 2020, 69, 9174-9179.	3.9	30
38	Iterative Joint Channel Estimation, User Activity Tracking, and Data Detection for FTN-NOMA Systems Supporting Random Access. IEEE Transactions on Communications, 2020, 68, 2963-2977.	4.9	49
39	Distributed Estimation Framework for Beyond 5G Intelligent Vehicular Networks. IEEE Open Journal of Vehicular Technology, 2020, 1, 190-214.	3.4	19
40	Parametric Message-Passing for Joint Localization and Synchronization in Cooperative Networks. , 2020, , .		1
41	Joint Radar-Communication-Based Bayesian Predictive Beamforming for Vehicular Networks. , 2020, , .		5
42	Expectation–Maximization-Based Passive Localization Relying on Asynchronous Receivers: Centralized Versus Distributed Implementations. IEEE Transactions on Communications, 2019, 67, 668-681.	4.9	40
43	TOA-Based Passive Localization Constructed Over Factor Graphs: A Unified Framework. IEEE Transactions on Communications, 2019, 67, 6952-6965.	4.9	56
44	Hybrid BP-EP Based Iterative Receiver for Faster-Than-Nyquist with Index Modulation., 2019, , .		2
45	Message Passing Receiver for SEFDM Signaling Over Multipath Channels. , 2019, , .		3
46	Iterative Receivers for Downlink MIMO-SCMA: Message Passing and Distributed Cooperative Detection. IEEE Transactions on Wireless Communications, 2018, 17, 3444-3458.	6.1	64
47	Low Complexity Message Passing Receiver for Faster-Than-Nyquist Signaling in Nonlinear Channels. IEEE Access, 2018, 6, 68233-68241.	2.6	5
48	A Low-Complexity Energy-Minimization-Based SCMA Detector and Its Convergence Analysis. IEEE Transactions on Vehicular Technology, 2018, 67, 12398-12403.	3.9	6
49	Gaussian Message Passing Based Passive Localization in the Presence of Receiver Detection Failures. , 2018, , .		2
50	A factor graph-based iterative detection of faster-than-Nyquist signaling in the presence of phase noise and carrier frequency offset., 2017, 63, 25-34.		9
51	A Hybrid BP-EP-VMP Approach to Joint Channel Estimation and Decoding for FTN Signaling over Frequency Selective Fading Channels. IEEE Access, 2017, 5, 6849-6858.	2.6	36
52	Hybrid Message Passing Based Low Complexity Receiver for SCMA System over Frequency Selective Channels. , $2017, \dots$		0
53	Frequency-Domain Iterative Message Passing Receiver for Faster-Than-Nyquist Signaling in Doubly Selective Channels. IEEE Wireless Communications Letters, 2016, 5, 584-587.	3.2	19
54	A graphical model based frequency domain equalization for FTN signaling in doubly selective channels. , 2016 , , .		1

#	Article	lF	CITATIONS
55	Factor graph approach for joint passive localization and receiver synchronization in wireless sensor networks. , 2016, , .		4
56	Variational Inference-Based Frequency-Domain Equalization for Faster-Than-Nyquist Signaling in Doubly Selective Channels. IEEE Signal Processing Letters, 2016, 23, 1270-1274.	2.1	32
57	Factor graph and damped expectation propagation based passive localization. , 2016, , .		0
58	Cooperative Joint Localization and Clock Synchronization Based on Gaussian Message Passing in Asynchronous Wireless Networks. IEEE Transactions on Vehicular Technology, 2016, 65, 7258-7273.	3.9	80
59	Joint channel estimation and decoding in the presence of phase noise over timeâ€selective flatâ€fading channels. IET Communications, 2016, 10, 577-585.	1.5	5
60	TOA-based passive localization of multiple targets with inaccurate receivers based on belief propagation on factor graph., 2016, 49, 14-23.		19
61	Expectation maximization-based passive localization in asynchronous wireless networks., 2015,,.		0
62	Distributed Passive Localization with Asynchronous Receivers Based on Expectation Maximization. , 2015, , .		5
63	Joint synchronization and localization based on Gaussian belief propagation in sensor networks. , $2015, , .$		5
64	Passive localization with inaccurate receivers based on Gaussian belief propagation on factor graph. , 2014, , .		1
65	A low-complexity cooperative localization algorithm based on variational message passing in wireless networks. , 2014, , .		1
66	Variational message passing for joint localization and synchronization in wireless sensor networks. , 2014, , .		4
67	Distributed Passive Localization with Asynchronous Receivers Based on Expectation Maximization. , 2014, , .		0
68	Particle swarm optimization-based particle filter for cooperative localization in wireless networks., 2013,,.		1