Airton da Cunha Martins-Junior

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3428497/publications.pdf

Version: 2024-02-01

42 papers 999 citations

18 h-index 454577 30 g-index

42 all docs

42 docs citations

times ranked

42

1300 citing authors

#	Article	IF	CITATIONS
1	Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (Danio rerio) co-exposed to arsenic and atrazine. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 172-173, 7-12.	1.3	71
2	Arsenic, cadmium, and mercury-induced hypertension: mechanisms and epidemiological findings. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2018, 21, 61-82.	2.9	68
3	Molecular Targets of Manganese-Induced Neurotoxicity: A Five-Year Update. International Journal of Molecular Sciences, 2021, 22, 4646.	1.8	68
4	The effects of manganese overexposure on brain health. Neurochemistry International, 2020, 135, 104688.	1.9	65
5	Manganese in the Diet: Bioaccessibility, Adequate Intake, and Neurotoxicological Effects. Journal of Agricultural and Food Chemistry, 2020, 68, 12893-12903.	2.4	65
6	New Insights on the Role of Manganese in Alzheimer's Disease and Parkinson's Disease. International Journal of Environmental Research and Public Health, 2019, 16, 3546.	1.2	58
7	Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanoparticles. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 1156-1165.	1.1	44
8	Risk Factors for Lead Exposure in Adult Population in Southern Brazil. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 92-108.	1.1	38
9	Arsenic speciation in Brazilian rice grains organically and traditionally cultivated: Is there any difference in arsenic content?. Food Research International, 2016, 89, 169-176.	2.9	37
10	Association between blood lead and blood pressure: a population-based study in Brazilian adults. Environmental Health, 2017, 16, 27.	1.7	36
11	Manganese-induced neurodegenerative diseases and possible therapeutic approaches. Expert Review of Neurotherapeutics, 2020, 20, 1109-1121.	1.4	35
12	Role for calcium signaling in manganese neurotoxicity. Journal of Trace Elements in Medicine and Biology, 2019, 56, 146-155.	1.5	33
13	An updated systematic review on the association between Cd exposure, blood pressure and hypertension. Ecotoxicology and Environmental Safety, 2021, 208, 111636.	2.9	32
14	Agricultural use of Samarco's spilled mud assessed by rice cultivation: A promising residue use?. Chemosphere, 2018, 193, 892-902.	4.2	28
15	Blood cadmium levels and sources of exposure in an adult urban population in southern Brazil. Environmental Research, 2020, 187, 109618.	3.7	28
16	Ferroptosis as a mechanism of non-ferrous metal toxicity. Archives of Toxicology, 2022, 96, 2391-2417.	1.9	28
17	A perspective of mitochondrial dysfunction in rats treated with silver and titanium nanoparticles (AgNPs and TiNPs). Journal of Trace Elements in Medicine and Biology, 2018, 47, 63-69.	1.5	26
18	Gut Microbiota as a Potential Player in Mn-Induced Neurotoxicity. Biomolecules, 2021, 11, 1292.	1.8	21

#	Article	IF	Citations
19	Polymorphism of Metallothionein 2A Modifies Lead Body Burden in Workers Chronically Exposed to the Metal. Public Health Genomics, 2016, 19, 47-52.	0.6	19
20	Evaluation of uptake, translocation, and accumulation of arsenic species by six different Brazilian rice (Oryza sativa L.) cultivars. Ecotoxicology and Environmental Safety, 2019, 169, 376-382.	2.9	19
21	Risk assessment of 22 chemical elements in dry and canned pet foods. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2018, 13, 359-365.	0.5	18
22	Effects of Lead Exposure and Genetic Polymorphisms on ALAD and GPx Activities in Brazilian Battery Workers. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 1073-1081.	1.1	17
23	Chrysin Administration Protects against Oxidative Damage in Varicocele-Induced Adult Rats. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-12.	1.9	16
24	New insights on mechanisms underlying methylmercury-induced and manganese-induced neurotoxicity. Current Opinion in Toxicology, 2021, 25, 30-35.	2.6	14
25	Ascorbic acid supplementation partially prevents the delayed reproductive development in juvenile male rats exposed to rosuvastatin since prepuberty. Reproductive Toxicology, 2017, 73, 328-338.	1.3	13
26	Endothelial Dysfunction Induced by Cadmium and Mercury and its Relationship to Hypertension. Current Hypertension Reviews, 2021, 17, 14-26.	0.5	13
27	Elemental fingerprint profiling with multivariate data analysis to classify organic chocolate samples. Journal of Chemometrics, 2018, 32, e3036.	0.7	10
28	Review of the mechanism underlying mefloquine-induced neurotoxicity. Critical Reviews in Toxicology, 2021, 51, 209-216.	1.9	10
29	Evaluating the risk of manganese-induced neurotoxicity of parenteral nutrition: review of the current literature. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 581-593.	1.5	9
30	Arsenic speciation in rice consumed in south-western Nigeria, and estimation of dietary intake of arsenic species through rice consumption. Toxicological and Environmental Chemistry, 2017, 99, 999-1006.	0.6	8
31	BXD Recombinant Inbred Mice as a Model to Study Neurotoxicity. Biomolecules, 2021, 11, 1762.	1.8	8
32	Levels and daily intake of lead (Pb) and six essential elements in gari samples from Ondo State, Southwest Nigeria: A potential risk factor of health status. Journal of Food Composition and Analysis, 2016, 45, 34-38.	1.9	7
33	Ascorbic acid supplementation ameliorates testicular hormonal signaling, sperm production and oxidative stress in male rats exposed to rosuvastatin during preâ€puberty. Journal of Applied Toxicology, 2019, 39, 305-321.	1.4	7
34	C. elegansâ€"An Emerging Model to Study Metal-Induced RAGE-Related Pathologies. International Journal of Environmental Research and Public Health, 2018, 15, 1407.	1.2	6
35	Blood reference values for metals in a general adult population in southern Brazil. Environmental Research, 2019, 177, 108646.	3.7	6
36	Haloperidol Interactions with the dop-3 Receptor in Caenorhabditis elegans. Molecular Neurobiology, 2021, 58, 304-316.	1.9	6

AIRTON DA CUNHA

#	Article	IF	CITATIONS
37	Toxic and essential elements in Nigerian rice and estimation of dietary intake through rice consumption. Food Additives and Contaminants: Part B Surveillance, 2015, 8, 1-6.	1.3	5
38	High throughput fluorimetric assessment of iron traffic and chelation in iron-overloaded Caenorhabditis elegans. BioMetals, 2020, 33, 255-267.	1.8	5
39	Iron overload and neurodegenerative diseases: What can we learn from <i>Caenorhabditis elegans</i> ?. Toxicology Research and Application, 2022, 6, 239784732210918.	0.7	2
40	Biomonitoring for uranium exposure among young children living in nineteen states across five regions of Brazil. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 779-785.	0.7	0
41	Validation and Application of a Methodology for Quantifying Levels of Parabens in Sports Supplements from Brazil Using Liquid Chromatography-Mass Spectrometry. Journal of the Brazilian Chemical Society, 0, , .	0.6	O
42	Neurotoxicology of metals. , 2022, , 445-458.		0