
## SebastiÃ;n E Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3428379/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Identification of key reaction intermediates during toluene combustion on a Pd/CeO2 catalyst using operando modulated DRIFT spectroscopy. Catalysis Today, 2022, 394-396, 225-234.           | 4.4  | 19        |
| 2  | Lipase-Catalyzed Interesterification of Fully and Partially Hydrogenated Soybean Oil Blends for<br>Bioparaffin Production. Industrial & Engineering Chemistry Research, 2022, 61, 3254-3262. | 3.7  | 0         |
| 3  | Toluene Adsorption on CeO2 (111) Studied by FTIR and DFT. Topics in Catalysis, 2022, 65, 934-943.                                                                                            | 2.8  | 3         |
| 4  | CO2 hydrogenation to methanol on Ga2O3-Pd/SiO2 catalysts: Dual oxide-metal sites or (bi)metallic surface sites?. Catalysis Today, 2021, 381, 154-162.                                        | 4.4  | 32        |
| 5  | ROS-generating rare-earth coordination networks for photodynamic inactivation of <i>Candida albicans</i> . Dalton Transactions, 2021, 50, 5853-5864.                                         | 3.3  | 4         |
| 6  | Bio-paraffin from Soybean Oil as Eco-friendly Alternative to Mineral Waxes. Industrial &<br>Engineering Chemistry Research, 2021, 60, 5364-5373.                                             | 3.7  | 3         |
| 7  | Catalytic and molecular insights of the esterification of ibuprofen and ketoprofen with glycerol.<br>Molecular Catalysis, 2021, 513, 111811.                                                 | 2.0  | 9         |
| 8  | Highly disperse CeO2 nanoparticles on MgO hexagonal plates as oxidation catalyst. Applied Catalysis A:<br>General, 2021, 623, 118282.                                                        | 4.3  | 6         |
| 9  | Design of an optimized DRIFT cell/microreactor for spectrokinetic investigations of surface reaction mechanisms. Molecular Catalysis, 2020, 481, 100628.                                     | 2.0  | 6         |
| 10 | Controlling CO <sub>2</sub> Hydrogenation Selectivity by Metalâ€6upported Electron Transfer.<br>Angewandte Chemie - International Edition, 2020, 59, 19983-19989.                            | 13.8 | 114       |
| 11 | Controlled selectivity for ethanol steam reforming reaction over doped CeO2 surfaces: The role of gallium. Applied Catalysis B: Environmental, 2020, 277, 119103.                            | 20.2 | 29        |
| 12 | Tailored BrÃ,nsted and Lewis surface acid sites of the phosphotungstic Wells Dawson<br>heteropoly-acid. Applied Surface Science, 2019, 495, 143565.                                          | 6.1  | 15        |
| 13 | 6th San Luis Conference on Surfaces, Interfaces and Catalysis. Topics in Catalysis, 2019, 62, 805-807.                                                                                       | 2.8  | 0         |
| 14 | Theoretical and FTIR Investigations of the Acetonitrile Hydrogenation Pathways on Platinum. Topics in Catalysis, 2019, 62, 1076-1085.                                                        | 2.8  | 11        |
| 15 | Influence of {111} nanofaceting on the dynamics of CO adsorption and oxidation over Au supported on CeO2 nanocubes: An operando DRIFT insight. Catalysis Today, 2019, 336, 90-98.            | 4.4  | 22        |
| 16 | Influence of Water on Enzymatic Esterification of Racemic Ketoprofen with Ethanol in a Solvent-Free<br>System. Topics in Catalysis, 2019, 62, 968-976.                                       | 2.8  | 7         |
| 17 | Gold Stabilized with Iridium on Ceria–Niobia Catalyst: Activity and Stability for CO Oxidation. Topics<br>in Catalysis, 2019, 62, 977-988.                                                   | 2.8  | 9         |
| 18 | Insight into the mechanism of acetonitrile hydrogenation in liquid phase on Pt/Al2O3 by ATR-FTIR.<br>Catalysis Today, 2019, 336, 22-32.                                                      | 4.4  | 15        |

SebastiÃin E Collins

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Resolution of intermediate surface species by combining modulated infrared spectroscopy and chemometrics. Analytica Chimica Acta, 2019, 1049, 38-46.                                | 5.4  | 14        |
| 20 | Crosslinkable acrylic-melamine latex produced by miniemulsion polymerization. Progress in Organic Coatings, 2018, 118, 82-90.                                                       | 3.9  | 15        |
| 21 | ATR-FTIR spectrokinetic analysis of the CO adsorption and oxidation at water/platinum interface.<br>Catalysis Today, 2017, 283, 127-133.                                            | 4.4  | 14        |
| 22 | Synergetic effect of bimetallic Au-Ru/TiO2 catalysts for complete oxidation of methanol. Applied Catalysis B: Environmental, 2017, 207, 79-92.                                      | 20.2 | 56        |
| 23 | Molecular recognition of an acyl–enzyme intermediate on the lipase B from Candida antarctica.<br>Catalysis Science and Technology, 2017, 7, 1953-1964.                              | 4.1  | 12        |
| 24 | Insights on hydride formation over cerium-gallium mixed oxides: A mechanistic study for efficient H2<br>dissociation. Journal of Catalysis, 2017, 345, 258-269.                     | 6.2  | 32        |
| 25 | In-Situ DRIFT Study of Au–Ir/Ceria Catalysts: Activity and Stability for CO Oxidation. Topics in Catalysis,<br>2016, 59, 347-356.                                                   | 2.8  | 23        |
| 26 | Molecular structure and thermal stability of the oxide-supported phosphotungstic Wells–Dawson<br>heteropolyacid. Physical Chemistry Chemical Physics, 2015, 17, 8097-8105.          | 2.8  | 5         |
| 27 | Promoted ceria catalysts for alkyne semi-hydrogenation. Journal of Catalysis, 2015, 324, 69-78.                                                                                     | 6.2  | 65        |
| 28 | Towards a green enantiomeric esterification of R/S-ketoprofen: A theoretical and experimental investigation. Journal of Molecular Catalysis B: Enzymatic, 2015, 118, 52-61.         | 1.8  | 18        |
| 29 | In situ FTIR and Raman study on the distribution and reactivity of surface vanadia species in V 2 O 5<br>/CeO 2 catalysts. Journal of Molecular Catalysis A, 2015, 408, 75-84.      | 4.8  | 25        |
| 30 | Critical Influence of Nanofaceting on the Preparation and Performance of Supported Gold Catalysts.<br>ACS Catalysis, 2015, 5, 3504-3513.                                            | 11.2 | 53        |
| 31 | Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported<br>Platinum Catalysts. ACS Catalysis, 2014, 4, 2088-2096.                             | 11.2 | 176       |
| 32 | Reversible deactivation of a Au/Ce0.62Zr0.38O2 catalyst in CO oxidation: A systematic study of CO2-triggered carbonate inhibition. Journal of Catalysis, 2014, 316, 210-218.        | 6.2  | 45        |
| 33 | Photocatalytic hydrogen production by Au–MxOy (M Ag, Cu, Ni) catalysts supported on TiO2. Catalysis<br>Communications, 2014, 47, 1-6.                                               | 3.3  | 58        |
| 34 | Design and operational limits of an ATR-FTIR spectroscopic microreactor for investigating reactions<br>at liquid–solid interface. Chemical Engineering Journal, 2014, 243, 197-206. | 12.7 | 31        |
| 35 | Infrared and Raman Investigation of Supported Phosphotungstic Wells- Dawson Heteropolyacid.<br>Current Catalysis, 2014, 3, 199-205.                                                 | 0.5  | 3         |
| 36 | Selective detection of reaction intermediates using concentration-modulation excitation DRIFT spectroscopy. Catalysis Today, 2013, 205, 34-40.                                      | 4.4  | 42        |

SebastiÃin E Collins

| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Surface Reduction Mechanism of Cerium–Gallium Mixed Oxides with Enhanced Redox Properties.<br>Journal of Physical Chemistry C, 2013, 117, 8822-8831.                                                     | 3.1  | 33        |
| 38 | Esterification of R/S-ketoprofen with 2-propanol as reactant and solvent catalyzed by Novozym® 435 at selected conditions. Journal of Molecular Catalysis B: Enzymatic, 2012, 83, 108-119.               | 1.8  | 20        |
| 39 | The role of Pd–Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst. Journal of Catalysis, 2012, 292, 90-98.               | 6.2  | 136       |
| 40 | Infrared spectroscopic study of carbon dioxide adsorption on the surface of cerium–gallium mixed oxides. Catalysis Today, 2012, 180, 9-18.                                                               | 4.4  | 45        |
| 41 | Investigation of the structure and proteolytic activity of papain in aqueous miscible organic media.<br>Process Biochemistry, 2012, 47, 47-56.                                                           | 3.7  | 24        |
| 42 | Acylating Capacity of the Phosphotungstic Wellsâ``Dawson Heteropoly Acid: Intermediate Reactive<br>Species. Journal of Physical Chemistry C, 2011, 115, 700-709.                                         | 3.1  | 15        |
| 43 | FTIR-ATR characterization of free Rhizomucor meihei lipase (RML), Lipozyme RM IM and chitosan-immobilized RML. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 220-228.                           | 1.8  | 40        |
| 44 | ATR-FTIR Study of the Decomposition of Acetic Anhydride on Fosfotungstic Wells–Dawson Heteropoly<br>Acid Using Concentration-Modulation Excitation Spectroscopy. Topics in Catalysis, 2011, 54, 229-235. | 2.8  | 15        |
| 45 | Gold Catalysts Supported on Cerium–Gallium Mixed Oxide for the Carbon Monoxide Oxidation and<br>Water Gas Shift Reaction. Topics in Catalysis, 2011, 54, 201-209.                                        | 2.8  | 31        |
| 46 | CO Oxidation Activity of a Au/Ceria-Zirconia Catalyst Prepared by Deposition–Precipitation with Urea.<br>Topics in Catalysis, 2011, 54, 931-940.                                                         | 2.8  | 23        |
| 47 | Fully Reversible Metal Deactivation Effects in Gold/Ceria–Zirconia Catalysts: Role of the Redox State of the Support. Angewandte Chemie - International Edition, 2010, 49, 9744-9748.                    | 13.8 | 42        |
| 48 | Effect of gallia doping on the acid–base and redox properties of ceria. Applied Catalysis A: General,<br>2010, 388, 202-210.                                                                             | 4.3  | 36        |
| 49 | Methanol synthesis from CO2/H2 using Ga2O3–Pd/silica catalysts: Kinetic modeling. Chemical<br>Engineering Journal, 2009, 150, 204-212.                                                                   | 12.7 | 100       |
| 50 | Stability of formate species on $\hat{l}^2$ -Ga2O3. Physical Chemistry Chemical Physics, 2009, 11, 1397.                                                                                                 | 2.8  | 58        |
| 51 | Heats of adsorption and activation energies of surface processes measured by infrared spectroscopy.<br>Journal of Molecular Catalysis A, 2008, 281, 73-78.                                               | 4.8  | 13        |
| 52 | Adsorption and Decomposition of Methanol on Gallium Oxide Polymorphs. Journal of Physical<br>Chemistry C, 2008, 112, 14988-15000.                                                                        | 3.1  | 40        |
| 53 | Hydrogen Interaction with a Ceriaâ^'Zirconia Supported Gold Catalyst. Influence of CO Co-adsorption and Pretreatment Conditions. Journal of Physical Chemistry C, 2007, 111, 14371-14379.                | 3.1  | 65        |
| 54 | Infrared Spectroscopic Study of the Carbon Dioxide Adsorption on the Surface of Ga2O3Polymorphs.<br>Journal of Physical Chemistry B, 2006, 110, 5498-5507.                                               | 2.6  | 147       |

SebastiÃin E Collins

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Methanol Adsorption on the β-Ga2O3Surface with Oxygen Vacancies: Theoretical and Experimental<br>Approach. Journal of Physical Chemistry B, 2006, 110, 11847-11853. | 2.6 | 29        |
| 56 | Mechanism of the decomposition of adsorbed methanol over a Pd/α,β-Ga2O3 catalyst. Applied Catalysis A:<br>General, 2005, 295, 126-133.                              | 4.3 | 42        |
| 57 | Hydrogen adsorption on β-Ga2O3(100) surface containing oxygen vacancies. Surface Science, 2005, 575, 171-180.                                                       | 1.9 | 49        |
| 58 | Hydrogen Spillover in Ga2O3–Pd/SiO2 Catalysts for Methanol Synthesis from CO2/H2. Catalysis<br>Letters, 2005, 103, 83-88.                                           | 2.6 | 97        |
| 59 | Hydrogen Chemisorption on Gallium Oxide Polymorphs. Langmuir, 2005, 21, 962-970.                                                                                    | 3.5 | 102       |
| 60 | An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/-GaO.<br>Journal of Catalysis, 2004, 226, 410-421.                         | 6.2 | 232       |
| 61 | Gallium–Hydrogen Bond Formation on Gallium and Gallium–Palladium Silica-Supported Catalysts.<br>Journal of Catalysis, 2002, 211, 252-264.                           | 6.2 | 80        |
| 62 | Gallium–Hydrogen Bond Formation on Gallium and Gallium–Palladium Silica-Supported Catalysts.<br>Journal of Catalysis, 2002, 211, 252-264.                           | 6.2 | 57        |