List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3428210/publications.pdf Version: 2024-02-01

YANHUL FENC

#	Article	IF	CITATIONS
1	Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials. Composites Part B: Engineering, 2022, 228, 109435.	5.9	52
2	Thermal conductivity and energy storage capacity enhancement and bottleneck of shape-stabilized phase change composites with graphene foam and carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2022, 152, 106703.	3.8	36
3	Thermal conductance control of non-bonded interaction between loaded halogen molecules and carbon nanotubes: A molecular dynamics study. International Journal of Heat and Mass Transfer, 2022, 183, 122216.	2.5	5
4	Elaborate manipulation on CNT intertube heat transport by using a polymer knob. International Journal of Heat and Mass Transfer, 2022, 184, 122280.	2.5	8
5	The effects of interactions between multiple blast furnace slag particles on crystallization characteristics. International Journal of Heat and Mass Transfer, 2022, 185, 122374.	2.5	6
6	Excellent heat transfer enhancement of CNT-metal interface by loading carbyne and metal nanowire into CNT. International Journal of Heat and Mass Transfer, 2022, 186, 122533.	2.5	12
7	Cooling and phase evolution of a molten blast furnace slag particle. Powder Technology, 2022, 399, 117166.	2.1	5
8	Enhanced Moisture Condensation on Hierarchical Structured Superhydrophobic–Hydrophilic Patterned Surfaces. Langmuir, 2022, 38, 863-869.	1.6	7
9	Near-field radiation analysis and thermal contact radius determination in the thermal conductivity measurement based on SThM open-loop system. Applied Physics Letters, 2022, 120, .	1.5	6
10	Broad low-frequency phonon resonance for increased across-tube heat transport. Physical Review B, 2022, 105, .	1.1	5
11	Evaluation of thermal performance for bionic porous ceramic phase change material using micro-computed tomography and lattice Boltzmann method. International Journal of Thermal Sciences, 2022, 179, 107621.	2.6	13
12	Pore scale simulation for melting of composite phase change materials considering interfacial thermal resistance. Applied Thermal Engineering, 2022, 212, 118624.	3.0	7
13	Liquid Film Sculpture via Droplet Impacting on Microstructured Heterowettable Surfaces. Advanced Functional Materials, 2022, 32, .	7.8	15
14	Using mesoporous carbon to pack polyethylene glycol as a shape-stabilized phase change material with excellent energy storage capacity and thermal conductivity. Microporous and Mesoporous Materials, 2021, 310, 110631.	2.2	49
15	Thermal properties of three-dimensional hierarchical porous graphene foam-carbon nanotube hybrid structure composites with phase change materials. Microporous and Mesoporous Materials, 2021, 312, 110781.	2.2	35
16	Experimental Characterization and Model Verification of Thermal Conductivity from Mesoporous to Macroporous SiOC Ceramics. Journal of Thermal Science, 2021, 30, 465-476.	0.9	16
17	Thermal barrier effect from internal pore channels on thickened aluminum nanofilm. International Journal of Thermal Sciences, 2021, 162, 106781.	2.6	17
18	A Neural Regression Model for Predicting Thermal Conductivity of CNT Nanofluids with Multiple Base Fluids. Journal of Thermal Science, 2021, 30, 1908-1916.	0.9	3

#	Article	IF	CITATIONS
19	Thermal properties of PEG/MOF-5 regularized nanoporous composite phase change materials: A molecular dynamics simulation. Case Studies in Thermal Engineering, 2021, 26, 101027.	2.8	9
20	Thermal conductivity and phase change characteristics of hierarchical porous diamond/erythritol composite phase change materials. Energy, 2021, 233, 121158.	4.5	31
21	Bionic hierarchical porous aluminum nitride ceramic composite phase change material with excellent heat transfer and storage performance. Composites Communications, 2021, 27, 100892.	3.3	45
22	Granulation performance by hybrid centrifugal-air blast technique for treatment of liquid slag. Powder Technology, 2021, 392, 204-211.	2.1	13
23	Numerical investigation on improving the heat storage and transfer performance of ceramic /D-mannitol composite phase change materials by bionic graded pores and nanoparticle additives. International Journal of Heat and Mass Transfer, 2021, 179, 121748.	2.5	20
24	Freestanding Flexible Sensor Based on 3ω Technique for Anisotropic Thermal Conductivity Measurement of Potassium Dihydrogen Phosphate Crystal. Sensors, 2021, 21, 7968.	2.1	7
25	Large-Scale Dewetting via Surfactant-Laden Droplet Impact. Langmuir, 2021, 37, 13729-13736.	1.6	2
26	Modified mesoporous silica filled with PEG as a shape-stabilized phase change materials for improved thermal energy storage performance. Microporous and Mesoporous Materials, 2020, 292, 109756.	2.2	76
27	Thermal conductance bottleneck of a three dimensional graphene–CNT hybrid structure: a molecular dynamics simulation. Physical Chemistry Chemical Physics, 2020, 22, 337-343.	1.3	14
28	Solidification with crystallization behavior of molten blast furnace slag particle during the cooling process. International Journal of Heat and Mass Transfer, 2020, 146, 118888.	2.5	22
29	A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Physics Reports, 2020, 843, 1-81.	10.3	344
30	Experimental study on particle flow characteristics of three-dimensional moving bed. Powder Technology, 2020, 374, 399-408.	2.1	11
31	In vivo skin thermophysical property testing technology using flexible thermosensor-based 3ï‰ method. International Journal of Heat and Mass Transfer, 2020, 163, 120550.	2.5	17
32	Numerical simulation of gas–solid heat transfer characteristics of porous structure composed of high-temperature particles in moving bed. Applied Thermal Engineering, 2020, 181, 115925.	3.0	20
33	Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites. International Journal of Heat and Mass Transfer, 2020, 152, 119565.	2.5	23
34	Scanning thermal microscopy method for thermal conductivity measurement of a single SiO2 nanoparticle. International Journal of Heat and Mass Transfer, 2020, 154, 119750.	2.5	12
35	Thermal Conductivity of a 2D Covalent Organic Framework and Its Enhancement Using Fullerene 3D Self-Assembly: a Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2020, 124, 8386-8393.	1.5	17
36	Study on heat transfer of process intensification in moving bed reactor based on the discrete element method. Chemical Engineering and Processing: Process Intensification, 2020, 151, 107915.	1.8	18

#	Article	IF	CITATIONS
37	Prediction on particle size characteristics of high-temperature liquid blast furnace slag in a centrifugal granulation process. Powder Technology, 2020, 376, 527-536.	2.1	14
38	Effect of the loading amount and arrangement of iodine chains on the interfacial thermal transport of carbon nanotubes: a molecular dynamics study. RSC Advances, 2020, 10, 44196-44204.	1.7	8
39	Three-dimensional fluid-solid coupling heat transfer simulation based on the multireference frame for a side-blown aluminum annealing furnace. Engineering Applications of Computational Fluid Mechanics, 2019, 13, 1036-1048.	1.5	3
40	Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials. Carbon, 2019, 145, 725-733.	5.4	50
41	Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon, 2019, 145, 650-657.	5.4	52
42	Phase change in modified metal organic frameworks MIL-101(Cr): Mechanism on highly improved energy storage performance. Microporous and Mesoporous Materials, 2019, 280, 124-132.	2.2	36
43	Modeling of the molten blast furnace slag particle deposition on the wall including phase change and heat transfer. Applied Energy, 2019, 248, 288-298.	5.1	29
44	Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation. Renewable and Sustainable Energy Reviews, 2019, 109, 578-605.	8.2	120
45	Review on micro/nano phase change materials for solar thermal applications. Renewable Energy, 2019, 140, 513-538.	4.3	185
46	Size effect on the thermal conductivity of octadecanoic acid: A molecular dynamics study. Computational Materials Science, 2019, 158, 14-19.	1.4	16
47	Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon, 2019, 141, 497-505.	5.4	136
48	Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials. Physical Chemistry Chemical Physics, 2018, 20, 7772-7780.	1.3	53
49	Advances in thermal transport properties at nanoscale in China. International Journal of Heat and Mass Transfer, 2018, 125, 413-433.	2.5	31
50	Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. Applied Thermal Engineering, 2018, 130, 1004-1011.	3.0	78
51	An evolutionary keyhole-mode heat transfer model in continuous plasma arc welding. International Journal of Heat and Mass Transfer, 2018, 117, 1188-1198.	2.5	26
52	Numerical analysis of weld pool behaviors in plasma arc welding with the lattice Boltzmann method. International Journal of Thermal Sciences, 2018, 124, 447-458.	2.6	20
53	Numerical simulation and optimization of the melting process for the regenerative aluminum melting furnace. Applied Thermal Engineering, 2018, 145, 315-327.	3.0	25
54	Exergy Analysis and Optimization of Sintering Process. Steel Research International, 2018, 89, 1800065.	1.0	9

#	Article	IF	CITATIONS
55	Highly Conducting Polythiophene Thin Films with Less Ordered Microstructure Displaying Excellent Thermoelectric Performance. Macromolecular Rapid Communications, 2018, 39, e1800283.	2.0	21
56	A 3-D lattice Boltzmann analysis of weld pool dynamic behaviors in plasma arc welding. Applied Thermal Engineering, 2018, 139, 623-635.	3.0	12
57	lodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers. Applied Thermal Engineering, 2018, 141, 913-920.	3.0	45
58	Melting behavior of Ag nanoparticles and their clusters. Applied Thermal Engineering, 2017, 111, 1457-1463.	3.0	32
59	Thermal transport barrier in carbon nanotube array nano-thermal interface materials. Carbon, 2017, 120, 128-136.	5.4	57
60	Bio-inspired intelligent evaporation modulation in a thermo-sensitive nanogel colloid solution for self-thermoregulation. Physical Chemistry Chemical Physics, 2017, 19, 16312-16316.	1.3	1
61	Hydrophobically modified nanoparticle suspensions to enhance water evaporation rate. Applied Physics Letters, 2016, 109, .	1.5	7
62	Thermal Conductivity of Graphene Wrinkles: A Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2016, 120, 23807-23812.	1.5	63
63	Selective Adsorption and Selective Transport Diffusion of CO ₂ –CH ₄ Binary Mixture in Coal Ultramicropores. Environmental Science & Technology, 2016, 50, 9380-9389.	4.6	59
64	Thermal Conductivity of 3D Boron-Based Covalent Organic Frameworks from Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2016, 120, 17060-17068.	1,5	23
65	High-efficiency, stable and non-chemically doped graphene–Si solar cells through interface engineering and PMMA antireflection. RSC Advances, 2016, 6, 10175-10179.	1.7	36
66	Plasma arc and weld pool coupled modeling of transport phenomena in keyhole welding. International Journal of Heat and Mass Transfer, 2016, 92, 628-638.	2.5	45
67	Heat conduction in coaxial nanocables of Au nanowire core and carbon nanotube shell: A molecular dynamics simulation. International Journal of Thermal Sciences, 2016, 99, 64-70.	2.6	19
68	Molecular simulation of CO 2 /CH 4 self- and transport diffusion coefficients in coal. Fuel, 2016, 165, 19-27.	3.4	113
69	Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms. Physical Chemistry Chemical Physics, 2015, 17, 16476-16482.	1.3	14
70	Dependence of Thermal Conductivity of Carbon Nanopeapods on Filling Ratios of Fullerene Molecules. Journal of Physical Chemistry A, 2015, 119, 11226-11232.	1.1	22
71	Thermal properties of C17H36/MCM-41 composite phase change materials. Computational Materials Science, 2015, 109, 300-307.	1.4	28
72	Numerical study of volatiles production, fluid flow and heat transfer in coke ovens. Applied Thermal Engineering, 2015, 81, 353-358.	3.0	33

#	Article	IF	CITATIONS
73	Enhancement of heat conduction in carbon nanotubes filled with fullerene molecules. Physical Chemistry Chemical Physics, 2015, 17, 27520-27526.	1.3	23
74	Flexible solar cells based on graphene-ultrathin silicon Schottky junction. RSC Advances, 2015, 5, 73202-73206.	1.7	28
75	Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 20179-20183.	4.0	32
76	Thermal conductivity of silica nanoparticle powder: Measurement and theoretical analysis. European Physical Journal Plus, 2015, 130, 1.	1.2	21
77	Near-field radiative heat transfer across a pore and its effects on thermal conductivity of mesoporous silica. Physica B: Condensed Matter, 2015, 456, 237-243.	1.3	10
78	Thermal conductivity prediction of mesoporous composites (Cu/MCM-41). EPJ Applied Physics, 2014, 66, 30902.	0.3	1
79	Measurement of In-Plane Thermal Conductivity of Ultrathin Films Using Micro-Raman Spectroscopy. Nanoscale and Microscale Thermophysical Engineering, 2014, 18, 183-193.	1.4	28
80	Preparation and thermal properties of porous heterogeneous composite phase change materials based on molten salts/expanded graphite. Solar Energy, 2014, 107, 63-73.	2.9	130
81	Numerical Study of Thermal Conductivities of Carbon-Based Mesoporous Composites. International Journal of Thermophysics, 2014, 35, 1863-1878.	1.0	2
82	Electron mean free path model for rectangular nanowire, nanofilm and nanoparticle. Physica B: Condensed Matter, 2014, 438, 17-21.	1.3	17
83	Energy propagation in plasma arc welding with keyhole tracking. Energy, 2014, 64, 1044-1056.	4.5	43
84	Study on the structure and reactivity of COREX coal. Journal of Thermal Analysis and Calorimetry, 2013, 113, 693-701.	2.0	9
85	Effect of partial substitution of Ca in LaMnO3 on coal catalytic combustion. Journal of Thermal Analysis and Calorimetry, 2013, 112, 719-726.	2.0	10
86	Simulation of transport phenomena in coke oven with staging combustion. Applied Thermal Engineering, 2013, 58, 354-362.	3.0	31
87	Prediction of Thermal Conductivity of Aluminum Nanocluster-Filled Mesoporous Silica (Al/MCM-41). International Journal of Thermophysics, 2013, 34, 2371-2384.	1.0	5
88	A DYNAMIC HEAT SOURCE MODEL WITH RESPECT TOKEYHOLE EVOLUTION IN PLASMA ARC WELDING. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 804.	0.3	3
89	Numerical Analysis of Heat Transfer and Fluid Flow in Keyhole Plasma Arc Welding. Numerical Heat Transfer; Part A: Applications, 2011, 60, 685-698.	1.2	43
90	Modeling the transient heat transfer for the controlled pulse key-holing process in plasma arc welding. International Journal of Thermal Sciences, 2011, 50, 1664-1671.	2.6	41

#	Article	IF	CITATIONS
91	Synthesis of confined Ag nanowires within mesoporous silica via double solvent technique and their catalytic properties. Journal of Colloid and Interface Science, 2011, 359, 40-46.	5.0	58
92	Experimental and numerical investigations of coke descending behavior in a coke dry quenching cooling shaft. Applied Thermal Engineering, 2008, 28, 1485-1490.	3.0	17
93	Numerical study on pressure drop factor in the vent-cap of CDQ shaft. Journal of Thermal Science, 2008, 17, 69-76.	0.9	3
94	Effect of micro mass transfer through phase interface on numerical simulation of solidification process. Heat Transfer - Asian Research, 2004, 33, 393-401.	2.8	1
95	Computational and experimental study of cooling process in Coke Dry Quenching experimental shaft. Journal of Thermal Science, 2002, 11, 121-127.	0.9	5