
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3428022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automated quantitative analysis of CZT SPECT stratifies cardiovascular risk in the obese population: Analysis of the REFINE SPECT registry. Journal of Nuclear Cardiology, 2022, 29, 727-736.	1.4	11
2	Feasibility study of PET dynamic imaging of [18F]DHMT for quantification of reactive oxygen species in the myocardium of large animals. Journal of Nuclear Cardiology, 2022, 29, 216-225.	1.4	5
3	Diagnostic safety of a machine learning-based automatic patient selection algorithm for stress-only myocardial perfusion SPECT. Journal of Nuclear Cardiology, 2022, 29, 2295-2307.	1.4	21
4	Clinical Deployment of Explainable Artificial Intelligence of SPECT for Diagnosis of Coronary Artery Disease. JACC: Cardiovascular Imaging, 2022, 15, 1091-1102.	2.3	44
5	Determining a minimum set of variables for machine learning cardiovascular event prediction: results from REFINE SPECT registry. Cardiovascular Research, 2022, 118, 2152-2164.	1.8	26
6	Addendum to ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging. Journal of Cardiac Failure, 2022, 28, e1-e4.	0.7	8
7	Potential novel imaging targets of inflammation in cardiac sarcoidosis. Journal of Nuclear Cardiology, 2022, 29, 2171-2187.	1.4	1
8	Comparison of diabetes to other prognostic predictors among patients referred for cardiac stress testing: A contemporary analysis from the REFINE SPECT Registry. Journal of Nuclear Cardiology, 2022, 29, 3003-3014.	1.4	6
9	Can We Manage Presymptomatic TTRÂV142I Related Risk?. JACC: Heart Failure, 2022, 10, 139-141.	1.9	1
10	Risk and predictors of mortality after implantable cardioverter-defibrillator implantation in patients with sarcoid cardiomyopathy. American Heart Journal, 2022, 246, 21-31.	1.2	6
11	Prevalence and predictors of automatically quantified myocardial ischemia within a multicenter international registry. Journal of Nuclear Cardiology, 2022, 29, 3221-3232.	1.4	3
12	Calcium scoring in low-dose ungated chest CT scans using convolutional long-short term memory networks. , 2022, , .		2
13	Handling missing values in machine learning to predict patient-specific risk of adverse cardiac events: Insights from REFINE SPECT registry. Computers in Biology and Medicine, 2022, 145, 105449.	3.9	14
14	The integration of genetically-regulated transcriptomics and electronic health records highlights a pattern of medical outcomes related to increased hepatic <i>transthyretin</i> expression. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2022, 29, 110-119.	1.4	1
15	Inhibition of type 1 immunity with tofacitinib is associated with marked improvement in longstanding sarcoidosis. Nature Communications, 2022, 13, .	5.8	39
16	Differences in Prognostic Value of Myocardial Perfusion Single-Photon Emission Computed Tomography Using High-Efficiency Solid-State Detector Between Men and Women in a Large International Multicenter Study. Circulation: Cardiovascular Imaging, 2022, 15, .	1.3	2
17	Machine learning to predict abnormal myocardial perfusion from pre-test features. Journal of Nuclear Cardiology, 2022, 29, 2393-2403.	1.4	7
18	Radiopharmaceutical supply disruptions and the use of 99mTc-hydroxymethylene diphosphonate as an alternative to 99mTc-pyrophosphate for the diagnosis of transthyretin cardiac amyloidosis: An ASNC Information Statement. Journal of Nuclear Cardiology, 2022, 29, 2748-2760.	1.4	4

#	Article	IF	CITATIONS
19	New approach for quantification of left ventricular function from low-dose gated bloodpool SPECT: Validation and comparison with conventional methods in patients. Journal of Nuclear Cardiology, 2021, 28, 939-950.	1.4	7
20	Quantification of myocardial blood flow (MBF) and reserve (MFR) incorporated with a novel segmentation approach: Assessments of quantitative precision and the lower limit of normal MBF and MFR in patients. Journal of Nuclear Cardiology, 2021, 28, 1236-1248.	1.4	0
21	Prognostically safe stress-only single-photon emission computed tomography myocardial perfusion imaging guided by machine learning: report from REFINE SPECT. European Heart Journal Cardiovascular Imaging, 2021, 22, 705-714.	0.5	38
22	Diagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2793-2800.	3.3	23
23	Optimal interpretation of Tc99m PYP in 2020: Avoiding the million-dollar mistake. Journal of Nuclear Cardiology, 2021, 28, 503-506.	1.4	6
24	Arrhythmias in Cardiac Sarcoidosis Bench to Bedside. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009203.	2.1	14
25	Quantitation of Poststress Change in Ventricular Morphology Improves Risk Stratification. Journal of Nuclear Medicine, 2021, 62, 1582-1590.	2.8	7
26	Impact of Early Revascularization on Major Adverse Cardiovascular Events inÂRelation to Automatically QuantifiedÂlschemia. JACC: Cardiovascular Imaging, 2021, 14, 644-653.	2.3	28
27	A phenomapping-derived tool to personalize the selection of anatomical vs. functional testing in evaluating chest pain (ASSIST). European Heart Journal, 2021, 42, 2536-2548.	1.0	17
28	Biobank Scale Pharmacogenomics Informs the Genetic Underpinnings of Simvastatin Use. Clinical Pharmacology and Therapeutics, 2021, 110, 777-785.	2.3	5
29	Non-steroidal treatment of cardiac sarcoidosis: A systematic review. IJC Heart and Vasculature, 2021, 34, 100782.	0.6	5
30	ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging. Circulation: Cardiovascular Imaging, 2021, 14, e000029.	1.3	48
31	ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 2 of 2—Diagnostic Criteria and Appropriate Utilization. Circulation: Cardiovascular Imaging, 2021, 14, e000030.	1.3	16
32	Prognostic Value of Phase Analysis for Predicting Adverse Cardiac Events Beyond Conventional Single-Photon Emission Computed Tomography Variables: Results From the REFINE SPECT Registry. Circulation: Cardiovascular Imaging, 2021, 14, e012386.	1.3	13
33	Addendum to ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2—evidence base and standardized methods of imaging. Journal of Nuclear Cardiology, 2021, 28, 1769-1774.	1.4	34
34	Impaired Myocardial Flow Reserve on ⁸² Rubidium Positron Emission Tomography/Computed Tomography in Patients With Systemic Sclerosis. Journal of Rheumatology, 2021, 48, 1574-1582.	1.0	2
35	Cytokine Signaling and Matrix Remodeling Pathways Associated with Cardiac Sarcoidosis Disease Activity Defined Using FDG PET Imaging. International Heart Journal, 2021, 62, 1096-1105.	0.5	2
36	Serial Assessment of Coronary Flow Reserve by Rubidium-82 Positron Emission Tomography Predicts Mortality in Heart Transplant Recipients. JACC: Cardiovascular Imaging, 2020, 13, 109-120.	2.3	38

#	Article	IF	CITATIONS
37	Using FDG-PET to guide targeted cardiac magnetic resonance imaging in patients with suspected cardiac sarcoidosis. Journal of Nuclear Cardiology, 2020, 27, 688-690.	1.4	2
38	Upper reference limits of transient ischemic dilation ratio for different protocols on new-generation cadmium zinc telluride cameras: A report from REFINE SPECT registry. Journal of Nuclear Cardiology, 2020, 27, 1180-1189.	1.4	17
39	Rationale and design of the REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT (REFINE SPECT). Journal of Nuclear Cardiology, 2020, 27, 1010-1021.	1.4	74
40	5-Year Prognostic Value of QuantitativeÂVersus Visual MPI in SubtleÂPerfusionÂDefects. JACC: Cardiovascular Imaging, 2020, 13, 774-785.	2.3	70
41	Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry. European Heart Journal Cardiovascular Imaging, 2020, 21, 549-559.	0.5	70
42	ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2—Diagnostic criteria and appropriate utilization. Journal of Nuclear Cardiology, 2020, 27, 659-673.	1.4	97
43	Treatment of Multiorgan Sarcoidosis With Tofacitinib. ACR Open Rheumatology, 2020, 2, 106-109.	0.9	51
44	Myocardial Ischemic Burden and Differences in Prognosis Among Patients With and Without Diabetes: Results From the Multicenter International REFINE SPECT Registry. Diabetes Care, 2020, 43, 453-459.	4.3	21
45	Impact of the ISCHEMIA Trial on Stress Nuclear Myocardial Perfusion Imaging. Journal of Nuclear Medicine, 2020, 61, 962-964.	2.8	3
46	Survival Following Implantable Cardioverterâ€Defibrillator Implantation in Patients With Amyloid Cardiomyopathy. Journal of the American Heart Association, 2020, 9, e016038.	1.6	19
47	Advances in PET-Based Cardiac Amyloid Radiotracers. Current Cardiology Reports, 2020, 22, 40.	1.3	13
48	Incidental finding of COVID-19 pulmonary infiltrates on SPECT/CT attenuation correction CT. Journal of Nuclear Cardiology, 2020, 27, 1385-1386.	1.4	4
49	Complex cellular physiology underlies the use of FDG-PET imaging in investigating post-infarction remodeling. Journal of Nuclear Cardiology, 2020, 27, 532-533.	1.4	1
50	Transient ischaemic dilation and post-stress wall motion abnormality increase risk in patients with less than moderate ischaemia: analysis of the REFINE SPECT registry. European Heart Journal Cardiovascular Imaging, 2020, 21, 567-575.	0.5	21
51	ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2—evidence base and standardized methods of imaging. Journal of Nuclear Cardiology, 2019, 26, 2065-2123.	1.4	230
52	ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 2 of 2—Diagnostic Criteria and Appropriate Utilization. Journal of Cardiac Failure, 2019, 25, 854-865.	0.7	70
53	ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging. Journal of Cardiac Failure, 2019, 25, e1-e39.	0.7	107
54	Advanced Cardiac Imaging and the Complexity of Diagnosing Cardiac Sarcoidosis. Circulation: Cardiovascular Imaging, 2019, 12, e009275.	1.3	0

#	Article	IF	CITATIONS
55	PET-Based Imaging of Ischemic Heart Disease. PET Clinics, 2019, 14, 211-221.	1.5	16
56	Repeatability and Optimization of FDGÂPositron Emission Tomography forÂEvaluation of Cardiac Sarcoidosis. JACC: Cardiovascular Imaging, 2019, 12, 1284-1287.	2.3	23
57	Cardiac Sarcoidosis. , 2019, , 105-113.		Ο
58	Deep Learning Analysis of Upright-Supine High-Efficiency SPECT Myocardial Perfusion Imaging for Prediction of Obstructive Coronary Artery Disease: A Multicenter Study. Journal of Nuclear Medicine, 2019, 60, 664-670.	2.8	113
59	Establishing an Evidence-Based Method to Diagnose Cardiac Sarcoidosis. Circulation: Cardiovascular Imaging, 2018, 11, e007408.	1.3	11
60	Time Course of Common Clinical Manifestations in Patients with Transthyretin Cardiac Amyloidosis: Delay From Symptom Onset to Diagnosis. Journal of Cardiac Failure, 2018, 24, 131-133.	0.7	28
61	Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT. JACC: Cardiovascular Imaging, 2018, 11, 1654-1663.	2.3	246
62	Use of fluorine-18 sodium fluoride for the diagnosis of transthyretin cardiac amyloidosis: The birth of a new technique. Journal of Nuclear Cardiology, 2018, 25, 1568-1570.	1.4	2
63	Quantification and Determination of Normal ¹²³ I-Meta Iodobenzylguanidine Heart-to-Mediastinum Ratio (HMR) from Cardiac SPECT/CT and Correlation with Planar HMR. Journal of Nuclear Medicine, 2018, 59, 652-658.	2.8	5
64	A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. Journal of Nuclear Cardiology, 2018, 25, 298-319.	1.4	97
65	Diagnosis of extensive myocardial infiltration by diffuse large B-cell lymphoma using 18F-fluorodeoxyglucose positron emission tomography (18-FDG PET). Journal of Nuclear Cardiology, 2018, 25, 1869-1871.	1.4	1
66	New Method for Quantification of the Left Ventricular Function from Low-dose Equilibrium Radionuclide Angiocardiography: Comparisons with Conventional Methods in Patients. , 2018, , .		0
67	InÂVivo Reactive Oxygen Species Detection With a Novel Positron Emission Tomography Tracer, 18F-DHMT, Allows for Early Detection of Anthracycline-Induced Cardiotoxicity in Rodents. JACC Basic To Translational Science, 2018, 3, 378-390.	1.9	46
68	Quantitative interpretation of FDG PET for cardiac sarcoidosis reclassifies visually interpreted exams and potentially impacts downstream interventions. Sarcoidosis Vasculitis and Diffuse Lung Diseases, 2018, 35, 342-353.	0.2	5
69	Visual identification of coronary calcifications on attenuation correction CT improves diagnostic accuracy of SPECT/CT myocardial perfusion imaging. Journal of Nuclear Cardiology, 2017, 24, 711-720.	1.4	23
70	National patterns in imaging utilization for diagnosis of cardiac amyloidosis: A focus on Tc99m-pyrophosphate scintigraphy. Journal of Nuclear Cardiology, 2017, 24, 1094-1097.	1.4	27
71	Imaging Options in Cardiac Amyloidosis: Differentiating AL from ATTR. Current Cardiovascular Imaging Reports, 2017, 10, 1.	0.4	4
72	Longitudinal systolic strain, cardiac function improvement, and survival following treatment of light-chain (AL) cardiac amyloidosis. European Heart Journal Cardiovascular Imaging, 2017, 18, 1057-1064.	0.5	60

EDWARD J MILLER

#	Article	IF	CITATIONS
73	Joint SNMMI–ASNC expert consensus document on the role of 18F-FDG PET/CT in cardiac sarcoid detection and therapy monitoring. Journal of Nuclear Cardiology, 2017, 24, 1741-1758.	1.4	132
74	Joint SNMMI–ASNC Expert Consensus Document on the Role of ¹⁸ F-FDG PET/CT in Cardiac Sarcoid Detection and Therapy Monitoring. Journal of Nuclear Medicine, 2017, 58, 1341-1353.	2.8	187
75	Up-regulation of Intracellular Calcium Handling Underlies the Recovery of Endotoxemic Cardiomyopathy in Mice. Anesthesiology, 2017, 126, 1125-1138.	1.3	8
76	The response of FDG uptake to immunosuppressive treatment on FDG PET/CT imaging for cardiac sarcoidosis. Journal of Nuclear Cardiology, 2017, 24, 413-424.	1.4	71
77	Can 99mTc-Pyrophosphate Aid in Early Detection of Cardiac Involvement in Asymptomatic Variant TTR Amyloidosis?. JACC: Cardiovascular Imaging, 2017, 10, 713-714.	2.3	55
78	A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. European Heart Journal Cardiovascular Imaging, 2017, 18, 1073-1089.	0.5	74
79	Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation, 2016, 133, 2404-2412.	1.6	1,335
80	Multicenter Study of Planar Technetium 99m Pyrophosphate Cardiac Imaging. JAMA Cardiology, 2016, 1, 880.	3.0	304
81	Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Dietâ€Induced Metabolic Heart Disease. Journal of the American Heart Association, 2016, 5, .	1.6	85
82	Partial Liver Kinase B1 (LKB1) Deficiency Promotes Diastolic Dysfunction, De Novo Systolic Dysfunction, Apoptosis, and Mitochondrial Dysfunction With Dietary Metabolic Challenge. Journal of the American Heart Association, 2016, 5, .	1.6	5
83	Quantifying FDG uptake to diagnose cardiac device infections: When and how should we do it?. Journal of Nuclear Cardiology, 2016, 23, 1467-1469.	1.4	2
84	AMPK deficiency in cardiac muscle results in dilated cardiomyopathy in the absence of changes in energy metabolism. Cardiovascular Research, 2015, 107, 235-245.	1.8	67
85	Multimodality Imaging of Cardiac Sarcoidosis. , 2015, , 51-72.		Ο
86	Mitochondrial remodeling in mice with cardiomyocyte-specific lipid overload. Journal of Molecular and Cellular Cardiology, 2015, 79, 275-283.	0.9	52
87	A novel LKB1 isoform enhances AMPK metabolic activity and displays oncogenic properties. Oncogene, 2015, 34, 2337-2346.	2.6	18
88	High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II. Journal of Molecular and Cellular Cardiology, 2015, 78, 165-173.	0.9	68
89	Preclinical Left Ventricular Diastolic Dysfunction in Metabolic Syndrome. American Journal of Cardiology, 2014, 114, 838-842.	0.7	46
90	Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. Journal of Nuclear Cardiology, 2014, 21, 925-939.	1.4	155

#	Article	IF	CITATIONS
91	Evaluation of Chest Pain. , 2014, , 3-13.		0
92	Scadding revisited: a proposed staging system for cardiac sarcoidosis. Sarcoidosis Vasculitis and Diffuse Lung Diseases, 2014, 31, 2-5.	0.2	36
93	Urocortin 2 autocrine/paracrine and pharmacologic effects to activate AMP-activated protein kinase in the heart. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16133-16138.	3.3	35
94	Nuclear Tracers for Transthyretin Cardiac Amyloidosis. Circulation: Cardiovascular Imaging, 2013, 6, 162-164.	1.3	9
95	The Polyphenols Resveratrol and S17834 Prevent the Structural and Functional Sequelae of Diet-Induced Metabolic Heart Disease in Mice. Circulation, 2012, 125, 1757-1764.	1.6	103
96	MIF in Cardiovascular Disease. , 2012, , 347-358.		0
97	Patient-centered imaging. Journal of Nuclear Cardiology, 2012, 19, 185-215.	1.4	106
98	A small molecule AMPK activator protects the heart against ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2011, 51, 24-32.	0.9	149
99	Practicing Internal Medicine Onboard the USNS COMFORT in the Aftermath of the Haitian Earthquake. Annals of Internal Medicine, 2010, 152, 733.	2.0	76
100	An unusual case of nonbacterial thrombotic (marantic) endocarditis. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 239-241.	0.4	2
101	AMPâ€activated protein kinase: a core signalling pathway in the heart. Acta Physiologica, 2009, 196, 37-53.	1.8	86
102	Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature, 2008, 451, 578-582.	13.7	392
103	Infusion of a biotinylated bis-glucose photolabel: a new method to quantify cell surface GLUT4 in the intact mouse heart. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1922-E1928.	1.8	15
104	Activation of AMPK α- and γ-isoform complexes in the intact ischemic rat heart. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1927-H1934.	1.5	59
105	Dual Mechanisms Regulating AMPK Kinase Action in the Ischemic Heart. Circulation Research, 2005, 96, 337-345.	2.0	95
106	AMP-Activated Protein Kinase Activates p38 Mitogen-Activated Protein Kinase by Increasing Recruitment of p38 MAPK to TAB1 in the Ischemic Heart. Circulation Research, 2005, 97, 872-879.	2.0	210
107	AMPK – A pivotal rheostat in the control of cardiac metabolism. Drug Discovery Today Disease Mechanisms, 2005, 2, 93-100.	0.8	2