Chong-Hun Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/342784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D Modeling of Silver Doped ZrO2 Coupled Graphene-Based Mesoporous Silica Quaternary Nanocomposite for a Nonenzymatic Glucose Sensing Effects. Nanomaterials, 2022, 12, 193.	4.1	12
2	Novel designed quaternary CuZnSnSe semiconductor combined graphene-polymer (CuZnSnSe-G-PPy) composites for highly selective gas-sensing properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 12812-12821.	2.2	5
3	Stabilizing decontamination foam using surface-modified silica nanoparticles containing chemical reagent: foam stability, structures, and dispersion properties. RSC Advances, 2021, 11, 1841-1849.	3.6	16
4	New modeling of AgFeNi2S4-graphene-TiO2 ternary nanocomposite with chelate compounds and its photocatalytic reduction of CO2. Journal of Materials Science: Materials in Electronics, 2021, 32, 9804-9821.	2.2	7
5	Non-enzymatic sensing of glucose with high specificity and sensitivity based on high surface area mesoporous BiZnSbV-G-SiO2. Journal of Materials Science: Materials in Electronics, 2021, 32, 8330-8346.	2.2	6
6	3D ternary LaCdSe-GO-TiO2 nanocomposite synthesized with high powersonic method and sonophotocatalytic efficiency for hydrogen evolution with different scavengers. Research on Chemical Intermediates, 2021, 47, 3411-3436.	2.7	2
7	The surface modification and characterization of SiO2 nanoparticles for higher foam stability. Scientific Reports, 2020, 10, 19399.	3.3	25
8	New Design of Active Material Based on YInWO ₄ -G-SiO ₂ for a Urea Sensor and High Performance for Nonenzymatic Electrical Sensitivity. ACS Biomaterials Science and Engineering, 2020, 6, 6981-6994.	5.2	17
9	Polypyrrole-Bonded Quaternary Semiconductor LiCuMo ₂ O ₁₁ –Graphene Nanocomposite for a Narrow Band Gap Energy Effect and Its Gas-Sensing Performance. ACS Omega, 2020, 5, 17337-17346.	3.5	17
10	New design of mesoporous SiO2 combined In2O3-graphene semiconductor nanocomposite for highly effective and selective gas detection. Journal of Materials Science, 2020, 55, 13085-13101.	3.7	17
11	Hybrid of Graphene based on quaternary Cu2ZnNiSe4 –WO3 Nanorods for Counter Electrode in Dye-sensitized Solar Cell Application. Scientific Reports, 2020, 10, 4738.	3.3	21
12	Sonochemical synthesis of quaternary LaNiSbWO4-G-PANI polymer nanocomposite for photocatalytic degradation of Safranin-O and gallic acid under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 394, 112484.	3.9	14
13	Modification of graphene based on a Ba2Cu8Ni2Se12 catalyst with CoS nanospheres for a counter electrode for dye-sensitized solar cells. New Journal of Chemistry, 2020, 44, 4199-4205.	2.8	3
14	Highly enhanced foams for stability and decontamination efficiency with a fluorosurfactant, silica nanoparticles, and Ce(IV) in radiological application. Environmental Technology and Innovation, 2020, 18, 100744.	6.1	11
15	New modeling of 3D quaternary type BaCuZnS-graphene-TiO2 (BCZS-G-T) composite for photosonocatalytic hydrogen evolution with scavenger effect. Photochemical and Photobiological Sciences, 2020, 19, 1765-1775.	2.9	6
16	The viability of rumpled La2CrFeW6-CdSe perovskite wrapped by graphene for a viable efficiency and icreased utilization of dye-sensitized solar cells. Materials Technology, 2019, 34, 247-257.	3.0	0
17	The double perovskite structure effect of a novel La2CuNiO6-ZnSe-graphene nanocatalytic composite for dye sensitized solar cells as a freestanding counter electrode. Photochemical and Photobiological Sciences, 2019, 18, 1389-1397.	2.9	11
18	Synergetic effect of La2CdSnTiO4-WSe2 perovskite structured nanoparticles on graphene oxide for high efficiency of dye sensitized solar cells. Journal of Alloys and Compounds, 2019, 775, 690-697.	5.5	7

CHONG-HUN JUNG

#	Article	IF	CITATIONS
19	Photocatalytic activities using a nanocomposite of mesoporous SiO2 and CdInSe-graphene nanoparticles under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 271-281.	3.9	7
20	Three-dimensional of graphene oxide Ba2VPbSe6 framework composite attach on cellulose based counter electrode for dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372, 11-20.	3.9	6
21	Effect of surface modification of silica nanoparticles by silane coupling agent on decontamination foam stability. Annals of Nuclear Energy, 2018, 114, 11-18.	1.8	29
22	Photocatalytic activities of contaminants by Bi2WO6-graphene composites decorated with mesoporous silica. Journal of Alloys and Compounds, 2018, 766, 477-487.	5.5	16
23	Highly efficient visible light driven photocatalytic activities of the LaCuS2-graphene composite-decorated ordered mesoporous silica. Separation and Purification Technology, 2018, 205, 11-21.	7.9	13
24	Sorption of cobalt by amine-functionalized silica nanoparticles for foam decontamination of nuclear facilities. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 841-847.	1.5	0
25	Structure and stability of decontamination foam in concentrated nitric acid and silica nanoparticles by image analysis. Annals of Nuclear Energy, 2016, 95, 102-108.	1.8	9
26	Morphological Control of Mesoporous Silica Nanoparticles and Their Application for Foam Stability. Asian Journal of Chemistry, 2014, 26, 1401-1404.	0.3	5
27	Effect of silica nanoparticles on the stability of decontamination foam and their application for oxide dissolution of corroded specimens. Annals of Nuclear Energy, 2014, 73, 168-174.	1.8	18
28	Size distribution and filtration property of particles generated from laser ablation decontamination process. Environmental Progress and Sustainable Energy, 2013, 32, 649-654.	2.3	2
29	The effect of NO 3 â^' and OHâ^' ions on the laser ablation of Cs+ ion on Type 304 stainless steel. Journal of Radioanalytical and Nuclear Chemistry, 2011, 287, 525-531.	1.5	1
30	Electrosorption of uranium ions on activated carbon fibers. Journal of Radioanalytical and Nuclear Chemistry, 2011, 287, 833-839.	1.5	44
31	A comparative study on the laser removal of Cs+ ion from type 304 stainless steel. Korean Journal of Chemical Engineering, 2010, 27, 1780-1785.	2.7	4
32	Decontamination of Metal Surfaces Artificially Contaminated With Cs+ lons by a Laser Ablation. , 2009, , \cdot		0
33	Cold Plasma Processing and Plasma Chemistry of Metallic Cobalt Surface. Plasma Chemistry and Plasma Processing, 2008, 28, 617-628.	2.4	12
34	Characteristics of a nuclides distribution during a melt decontamination of radioactive aluminum wastes. Korean Journal of Chemical Engineering, 2008, 25, 1344-1349.	2.7	0
35	Development of the In-situ Monitoring System for Pipe Internal Contamination Measurement in the Decommissioning Site. Journal of Nuclear Science and Technology, 2008, 45, 500-502.	1.3	3
36	Melting Decontamination of Radioactive Scrap Metal by Graphite Arc Melter. Journal of Chemical Engineering of Japan, 2008, 41, 607-611.	0.6	1

CHONG-HUN JUNG

#	Article	IF	CITATIONS
37	Distribution of the Radionuclides during the Melting of Aluminum Wastes Generated from the TRIGA MARK III Research Reactor. Journal of Chemical Engineering of Japan, 2008, 41, 602-606.	0.6	1
38	The Technical Development for Reuse of Radioactive Concrete Waste Generated by Dismantling of Nuclear Facilities. , 2008, , .		0
39	Development and Performance Assessment of a Soil Washing Equipment for Soil Contaminated With Radionuclide. , 2007, , 965.		0
40	The Application of Visualization and Simulation in a Dismantling Process. Journal of Nuclear Science and Technology, 2007, 44, 649-656.	1.3	8
41	The Application of Visualization and Simulation in a Dismantling Process. Journal of Nuclear Science and Technology, 2007, 44, 649-656.	1.3	2
42	ICONE15-10596 CHARACTERISTICS OF URANIUM DISTRIBUTION DURING THE METAL MELTING IN AN ELECTRIC ARC FURNACE. The Proceedings of the International Conference on Nuclear Engineering (ICONE), 2007, 2007.15, _ICONE1510ICONE1510.	0.0	0
43	Analysis of Combustion Kinetics of Powdered Nuclear Graphite by using a Non-isothermal Thermogravimetric Method. Journal of Nuclear Science and Technology, 2006, 43, 1436-1439.	1.3	12
44	Separation of Technetium in Nitric Acid Solution With an Extractant Impregnated Resin. , 2006, , 527.		0
45	Characteristics of Melting for the Radioactive Aluminum Wastes From the Decommissioned Nuclear Facilities. , 2006, , 475.		0
46	Adsorptive separation of rhenium and rhodium in nitric acid solution using a column packed with an extractant impregnated resin. Korean Journal of Chemical Engineering, 2006, 23, 1023-1027.	2.7	5
47	Adsorption of rhenium and rhodium in nitric acid solution by Amberlite XAD-4 impregnated with Aliquat 336. Korean Journal of Chemical Engineering, 2006, 23, 303-308.	2.7	21
48	Analysis of Combustion Kinetics of Powdered Nuclear Graphite by using a Non-isothermal Thermogravimetric Method. Journal of Nuclear Science and Technology, 2006, 43, 1436-1439.	1.3	1
49	Metal Surface Decontamination by the PFC Solution. , 2006, , .		0
50	Preparation of PAN-zeolite 4A composite ion exchanger and its uptake behavior for Sr and Cs ions in acid solution. Korean Journal of Chemical Engineering, 2002, 19, 838-842.	2.7	14
51	Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2000, 246, 299-307.	1.5	59
52	Separation of Palladium from a Simulated Radioactive Liquid Waste by Precipitation Using Ascorbic Acid. Separation Science and Technology, 2000, 35, 411-420.	2.5	9
53	Ion exchange characteristics of palladium from nitric acid solution by anion exchangers. Korean Journal of Chemical Engineering, 1999, 16, 571-575.	2.7	19