
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3427595/publications.pdf Version: 2024-02-01

ΥΠ ΠΠΑΝ

#	Article	IF	CITATIONS
1	A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 2019, 29, 1808843.	7.8	835
2	Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule, 2019, 3, 1464-1477.	11.7	448
3	Improvement of Gas and Humidity Sensing Properties of Organ-like MXene by Alkaline Treatment. ACS Sensors, 2019, 4, 1261-1269.	4.0	232
4	Recent progress on thin-film encapsulation technologies for organic electronic devices. Optics Communications, 2016, 362, 43-49.	1.0	217
5	Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sensors and Actuators B: Chemical, 2021, 326, 128828.	4.0	199
6	Crystalline Liquid-like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film. Journal of the American Chemical Society, 2019, 141, 13948-13953.	6.6	163
7	White organic light-emitting devices using a phosphorescent sensitizer. Applied Physics Letters, 2003, 82, 4224-4226.	1.5	110
8	Opportunities and Challenges of Lead-Free Perovskite Optoelectronic Devices. Trends in Chemistry, 2019, 1, 368-379.	4.4	100
9	Hermetic seal for perovskite solar cells: An improved plasma enhanced atomic layer deposition encapsulation. Nano Energy, 2020, 69, 104375.	8.2	78
10	White organic light-emitting devices with a bipolar transport layer between blue fluorescent and orange phosphorescent emitting layers. Applied Physics Letters, 2007, 91, 023505.	1.5	74
11	Oligomeric Phenylenevinylene with Cross Dipole Arrangement and Amorphous Morphology: Enhanced Solid-State Luminescence Efficiency and Electroluminescence Performance. Advanced Materials, 2005, 17, 2710-2714.	11.1	71
12	Realization of Thin Film Encapsulation by Atomic Layer Deposition of Al ₂ O ₃ at Low Temperature. Journal of Physical Chemistry C, 2013, 117, 20308-20312.	1.5	69
13	Efficient Flexible Inorganic Perovskite Light-Emitting Diodes Fabricated with CsPbBr ₃ Emitters Prepared via Low-Temperature in Situ Dynamic Thermal Crystallization. Nano Letters, 2020, 20, 4673-4680.	4.5	55
14	Recent advances in semitransparent perovskite solar cells. InformaÄnÃ-Materiály, 2021, 3, 101-124.	8.5	55
15	Efficient non-doped monochrome and white phosphorescent organic light-emitting diodes based on ultrathin emissive layers. Organic Electronics, 2015, 26, 451-457.	1.4	53
16	A flexible plasma-treated silver-nanowire electrode for organic light-emitting devices. Scientific Reports, 2017, 7, 16468.	1.6	51
17	Color-stable and efficient stacked white organic light-emitting devices comprising blue fluorescent and orange phosphorescent emissive units. Applied Physics Letters, 2008, 93, 153508.	1.5	49
18	Thin-Film Barrier Performance of Zirconium Oxide Using the Low-Temperature Atomic Layer Deposition Method. ACS Applied Materials & Interfaces, 2014, 6, 3799-3804.	4.0	49

#	Article	IF	CITATIONS
19	Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Organic Electronics, 2017, 41, 179-185.	1.4	49
20	Low-temperature remote plasma enhanced atomic layer deposition of ZrO2/zircone nanolaminate film for efficient encapsulation of flexible organic light-emitting diodes. Scientific Reports, 2017, 7, 40061.	1.6	47
21	Progress of Highâ€Throughput and Lowâ€Cost Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900556.	3.1	43
22	Doping-free orange and white phosphorescent organic light-emitting diodes with ultra-simply structure and excellent color stability. Organic Electronics, 2015, 18, 84-88.	1.4	41
23	Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes. Applied Physics Letters, 2008, 92, .	1.5	40
24	Functional Metal Oxides in Perovskite Solar Cells. ChemPhysChem, 2019, 20, 2580-2586.	1.0	39
25	White light-emitting devices based on the combined emission from red CdSe/ZnS quantum dots, green phosphorescent, and blue fluorescent organic molecules. Applied Physics Letters, 2009, 94, 243506.	1.5	37
26	The improvement of thin film barrier performances of organic–inorganic hybrid nanolaminates employing a low-temperature MLD/ALD method. RSC Advances, 2014, 4, 43850-43856.	1.7	35
27	Highly flexible peeled-off silver nanowire transparent anode using in organic light-emitting devices. Applied Surface Science, 2015, 351, 445-450.	3.1	34
28	Bulk Passivation and Interfacial Passivation for Perovskite Solar Cells: Which One is More Effective?. Advanced Materials Interfaces, 2021, 8, 2002078.	1.9	34
29	Self-Assembly 3D Porous Crumpled MXene Spheres as Efficient Gas and Pressure Sensing Material for Transient All-MXene Sensors. Nano-Micro Letters, 2022, 14, 56.	14.4	33
30	High barrier properties of transparent thin-film encapsulations for top emission organic light-emitting diodes. Organic Electronics, 2014, 15, 1120-1125.	1.4	31
31	High quality factor microcavity OLED employing metal-free electrically active Bragg mirrors. Organic Electronics, 2018, 62, 174-180.	1.4	31
32	High-performance blue electroluminescence devices based on distyrylbenzene derivatives. Applied Physics Letters, 2006, 88, 263503.	1.5	30
33	Aluminum-Doped Zinc Oxide Transparent Electrode Prepared by Atomic Layer Deposition for Organic Light Emitting Devices. IEEE Nanotechnology Magazine, 2017, 16, 634-638.	1.1	29
34	Two-In-One Method for Graphene Transfer: Simplified Fabrication Process for Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 7289-7295.	4.0	29
35	Optimization of Al ₂ O ₃ Films Deposited by ALD at Low Temperatures for OLED Encapsulation. Journal of Physical Chemistry C, 2014, 118, 18783-18787.	1.5	28
36	Influence of interlayer on the performance of stacked white organic light-emitting devices. Applied Physics Letters, 2009, 95, .	1.5	26

#	Article	IF	CITATIONS
37	Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices. Materials, 2015, 8, 600-610.	1.3	26
38	High-performance flexible Ag nanowire electrode with low-temperature atomic-layer-deposition fabrication of conductive-bridging ZnO film. Nanoscale Research Letters, 2015, 10, 90.	3.1	26
39	Smooth ZnO:Al-AgNWs Composite Electrode for Flexible Organic Light-Emitting Device. Nanoscale Research Letters, 2017, 12, 77.	3.1	26
40	Effect of Various Oxidants on Reaction Mechanisms, Self‣imiting Natures and Structural Characteristics of Al ₂ O ₃ Films Grown by Atomic Layer Deposition. Advanced Materials Interfaces, 2018, 5, 1701248.	1.9	26
41	Enhanced flexibility and stability of PEDOT:PSS electrodes through interfacial crosslinking for flexible organic light-emitting diodes. Organic Electronics, 2021, 89, 106047.	1.4	25
42	Fabrication of tunable [Al2O3:Alucone] thin-film encapsulations for top-emitting organic light-emitting diodes with high performance optical and barrier properties. Organic Electronics, 2014, 15, 2546-2552.	1.4	24
43	High-performance barrier using a dual-layer inorganic/organic hybrid thin-film encapsulation for organic light-emitting diodes. Organic Electronics, 2014, 15, 1936-1941.	1.4	22
44	Highly Efficient, Simplified Monochrome and White Organic Lightâ€Emitting Devices based on Novel Exciplex Host. Advanced Optical Materials, 2020, 8, 1901247.	3.6	22
45	White Light-Emitting Devices Based on Inorganic Perovskite and Organic Materials. Molecules, 2019, 24, 800.	1.7	21
46	Highly efficient organic-inorganic hybrid perovskite quantum dot/nanocrystal light-emitting diodes using graphene electrode and modified PEDOT:PSS. Organic Electronics, 2019, 72, 30-38.	1.4	20
47	Very low voltage and stable p-i-n organic light-emitting diodes using a linear S,S-dioxide oligothiophene as emitting layer. Applied Physics Letters, 2009, 94, 063510.	1.5	19
48	High efficiency warm white phosphorescent organic light emitting devices based on blue light emission from a bipolar mixed-host. Organic Electronics, 2017, 45, 273-278.	1.4	19
49	Shaping White Light Through Electroluminescent Fully Organic Coupled Microcavities. Advanced Materials, 2010, 22, 4696-4700.	11.1	18
50	Flexible transparent electrodes for organic light-emitting diodes simply fabricated with AuCl3-modied graphene. Organic Electronics, 2018, 63, 71-77.	1.4	18
51	Surface Functionalization of a Graphene Cathode to Facilitate ALD Growth of an Electron Transport Layer and Realize High-Performance Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 4208-4216.	2.5	18
52	Improved efficiency of organic light-emitting devices employing bathocuproine doped in the electron-transporting layer. Semiconductor Science and Technology, 2003, 18, L49-L52.	1.0	17
53	Efficient white organic light-emitting diodes based on an orange iridium phosphorescent complex. Journal of Luminescence, 2011, 131, 2144-2147.	1.5	17
54	Management of charge carriers and excitons for efficient and color-stable white phosphorescent organic light-emitting diodes with simplified structure. Organic Electronics, 2016, 37, 207-212.	1.4	17

#	Article	IF	CITATIONS
55	High-efficiency and superior color-stability white phosphorescent organic light-emitting diodes based on double mixed-host emission layers. Organic Electronics, 2016, 31, 136-141.	1.4	17
56	Multiple short pulse process for low-temperature atomic layer deposition and its transient steric hindrance. Applied Physics Letters, 2019, 114, .	1.5	17
57	Improved injection properties of self-passivated degenerated transparent electrode for organic and perovskite light emitting devices. Applied Surface Science, 2020, 504, 144442.	3.1	17
58	A novel amorphous oligo(phenylenevinylene) dimer with a biphenyl linkage center and fluorene end groups for electroluminescent devices. Journal of Materials Chemistry, 2004, 14, 2735.	6.7	16
59	Simulation of transform for external quantum efficiency and power efficiency of electroluminescent devices. Journal of Luminescence, 2007, 122-123, 626-628.	1.5	15
60	Passivation Properties of UV-Curable Polymer for Organic Light Emitting Diodes. ECS Solid State Letters, 2013, 2, R31-R33.	1.4	15
61	Transparent electrodes based on ultrathin/ultra smooth Cu films produced through atomic layer deposition as new ITO-free organic light-emitting devices. Organic Electronics, 2018, 58, 18-24.	1.4	15
62	High-Efficiency White Organic Light-Emitting Devices Based on Multiple Quantum-Well Structure. Chinese Physics Letters, 2004, 21, 534-536.	1.3	14
63	Highly efficient phosphorescent organic light-emitting devices based on Re(CO)3Cl-bathophenanthroline. Semiconductor Science and Technology, 2007, 22, 553-556.	1.0	14
64	Highly efficient white polymer light-emitting devices based on wide bandgap polymer doped with blue and yellow phosphorescent dyes. Optics Letters, 2010, 35, 2436.	1.7	14
65	High-efficiency red phosphorescent electroluminescence devices based on mixed p / n host matrices. Optics Letters, 2010, 35, 3174.	1.7	13
66	White-light electroluminescent organic devices based on efficient energy harvesting of singlet and triplet excited states using blue-light exciplex. Applied Physics Express, 2014, 7, 052102.	1.1	13
67	Spectroscopic ellipsometry study of CsPbBr ₃ perovskite thin films prepared by vacuum evaporation. Journal Physics D: Applied Physics, 2021, 54, 224002.	1.3	12
68	Highly efficient orange and white OLEDs based on ultrathin phosphorescent emitters with double reverse intersystem crossing system. Journal of Luminescence, 2022, 246, 118852.	1,5	12
69	Small molecular white organic light emitting devices with a single emission layer. Semiconductor Science and Technology, 2004, 19, L32-L34.	1.0	11
70	Highly efficient blue organic light-emitting devices using oligo(phenylenevinylene) dimers as an emitting layer. Semiconductor Science and Technology, 2004, 19, L78-L80.	1.0	11
71	Efficient simplified orange and white phosphorescent organic light-emitting devices with reduced efficiency roll-off. Organic Electronics, 2015, 22, 122-126.	1.4	11
72	Hybrid perovskite charge generation layer for highly efficient tandem organic light-emitting diodes. Organic Electronics, 2019, 73, 299-303.	1.4	11

#	Article	IF	CITATIONS
73	Highly Conductive Alkalineâ€Earth Metal Electrodes: The Possibility of Maintaining Both Low Work Function and Surface Stability for Organic Electronics. Advanced Optical Materials, 2020, 8, 2000206.	3.6	11
74	Highly efficient, ultralow turn-on voltage red and white organic light-emitting devices based on a novel exciplex host. Materials Advances, 2021, 2, 3677-3684.	2.6	11
75	Improved performance for white phosphorescent organic light-emitting diodes utilizing an orange ultrathin non-doped emission layer. RSC Advances, 2015, 5, 39097-39102.	1.7	10
76	Highly efficient orange and white phosphorescent organic light-emitting devices with simplified structure. Organic Electronics, 2015, 26, 225-229.	1.4	10
77	Highly-flexible, ultra-thin, and transparent single-layer graphene/silver composite electrodes for organic light emitting diodes. Nanotechnology, 2017, 28, 315201.	1.3	10
78	Phosphomolybdic Acid-Modified Monolayer Graphene Anode for Efficient Organic and Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 12268-12277.	4.0	10
79	Processing and Preparation Method for High-Quality Opto-Electronic Perovskite Film. Frontiers in Materials, 2021, 8, .	1.2	10
80	Stable and highly efficient perovskite solar cells: Doping hydrophobic fluoride into hole transport material PTAA. Nano Research, 2022, 15, 4431-4438.	5.8	10
81	Efficient white phosphorescent organic light-emitting diodes consisting of orange ultrathin and blue mixed host emission layers. Journal Physics D: Applied Physics, 2016, 49, 335101.	1.3	9
82	Atomic Layer Deposition: Effect of Various Oxidants on Reaction Mechanisms, Selfâ€Limiting Natures and Structural Characteristics of Al ₂ O ₃ Films Grown by Atomic Layer Deposition (Adv. Mater. Interfaces 14/2018). Advanced Materials Interfaces, 2018, 5, 1870070.	1.9	9
83	White organic light-emitting devices employing phosphorescent iridium complex as RGB dopants. Semiconductor Science and Technology, 2007, 22, 728-731.	1.0	8
84	Application of exciplex in the fabrication of white organic light emitting devices with mixed fluorescent and phosphorescent layers. Journal of Luminescence, 2015, 166, 77-81.	1.5	8
85	Efficient white organic light-emitting diodes with double co-host emitting layers. Journal of Materials Chemistry C, 2018, 6, 9890-9896.	2.7	8
86	A Novel Nucleation Inducer for Ultrathin Au Anodes in High Efficiency and Flexible Organic Optoelectronic Devices. Advanced Optical Materials, 2020, 8, 1901320.	3.6	8
87	White organic light-emitting devices. Optical and Quantum Electronics, 2004, 36, 1193-1203.	1.5	7
88	Highly efficient and high colour rendering index white organic light-emitting devices using bis(2-(2-fluorphenyl)- 1,3-benzothiozolato-N,C2′) iridium (acetylacetonate) as yellow emitter. Semiconductor Science and Technology, 2007, 22, 798-801.	1.0	7
89	Improving the Performance of Organic Perovskite Solar Cells by Additive Engineering with 6â€Aminonicotinic Acid. Solar Rrl, 2022, 6, .	3.1	7
90	Dramatic efficiency improvement in single-layer orange phosphorescent organic light-emitting devices with suppressed efficiency roll-off. RSC Advances, 2016, 6, 55017-55021.	1.7	6

#	Article	IF	CITATIONS
91	Improved color stability of white organic light-emitting diodes without interlayer between red, orange and blue emission layers. Optics Communications, 2016, 362, 59-63.	1.0	6
92	Advanced Applications of Atomic Layer Deposition in Perovskiteâ€Based Solar Cells. Advanced Photonics Research, 2021, 2, 2100011.	1.7	6
93	Small Molecular White Organic Light Emitting Devices with Single Emission Zone. Japanese Journal of Applied Physics, 2004, 43, 7501-7503.	0.8	5
94	Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes. Journal Physics D: Applied Physics, 2009, 42, 055115.	1.3	5
95	High-efficiency orange and white phosphorescent organic light-emitting diodes based on homojunction structure. Organic Electronics, 2017, 44, 183-188.	1.4	5
96	Organic–inorganic hybrid perovskite quantum dot light-emitting diodes using a graphene electrode and modified PEDOT:PSS. RSC Advances, 2019, 9, 20931-20940.	1.7	5
97	ALD-Assisted Graphene Functionalization for Advanced Applications. Journal of Electronic Materials, 0, , 1.	1.0	5
98	Novel tetraarylsilan-centred compounds as single host for white organic light-emitting diodes with high efficiency and low roll-off. Journal Physics D: Applied Physics, 2013, 46, 265101.	1.3	4
99	Fabrication of nucleation induction layer of self-encapsulated metal anode by an atomic layer half-reaction for enhanced flexible OLEDs. Applied Physics Letters, 2021, 118, .	1.5	4
100	Improving the current efficiency of organic light-emitting device utilizing the well structure. Optical and Quantum Electronics, 2005, 37, 371-376.	1.5	3
101	High-efficiency Red Electrofluorescence Devices Employing a Rhenium Complex as Phosphorescent Sensitizer. Optical and Quantum Electronics, 2005, 37, 1121-1127.	1.5	3
102	A high performance fluorescent white organic light-emitting device and its optimization for full-colour display. Semiconductor Science and Technology, 2006, 21, 148-151.	1.0	3
103	Pure red emission hybrid light-emitting devices based on the blend of CdSe/ZnS quantum dots and an n-type polymer. Thin Solid Films, 2012, 520, 7153-7156.	0.8	3
104	Effect of hole mobilities through the emissive layer on space charge limited currents of phosphorescent organic light-emitting diodes. Optical and Quantum Electronics, 2015, 47, 375-385.	1.5	3
105	High-efficiency and low efficiency roll-off in white organic light-emitting diodes employing a novel blue emitter. Organic Electronics, 2019, 75, 105375.	1.4	3
106	Improved efficiency, stable spectra and low efficiency roll-off achieved simultaneously in white phosphorescent organic light-emitting diodes by strategic exciton management. Organic Electronics, 2021, 97, 106262.	1.4	3
107	Highly efficient phosphorescent organic light-emitting diodes based on single-layer structure. Optics Letters, 2019, 44, 1722.	1.7	3
108	Engineering of interface exciplex system for highly efficient white organic light-emitting diodes based on single-emission-layer architecture. Organic Electronics, 2022, 100, 106382.	1.4	3

#	Article	IF	CITATIONS
109	Novel optical and electrical combined calcium corrosion test: An industrial application of the barrier permeability of spotless water vapor. Measurement: Journal of the International Measurement Confederation, 2022, 196, 111264.	2.5	3
110	Blue electroluminescent devices based on a trimeric phenylenvinylene derivative as emitting layer. Thin Solid Films, 2005, 492, 275-278.	0.8	2
111	A Novel Efficient Blue Organic Light Emitting Structure. Materials Science Forum, 2005, 475-479, 3677-3680.	0.3	2
112	Small-molecular white organic light-emitting devices employing 2, 5, 2′, 5′-tetra (p-trifluoromethylstyryl)-biphenyl as single-emitting component. Optical and Quantum Electronics, 2008, 40, 57-63.	1.5	2
113	The Cut-Off Phenomenon Effect on ZrO ₂ Growth Using Remote Plasma-Enhanced Atomic Layer Deposition. Journal of Physical Chemistry C, 2017, 121, 4714-4719.	1.5	2
114	Highly efficient blue and white phosphorescent organic light-emitting diodes with low-efficiency roll-off utilizing thermally activated delayed fluorescent-based co-host architecture. Journal of Luminescence, 2022, 244, 118686.	1.5	2
115	High efficiency, ultra-low roll-offs in orange phosphorescent organic light-emitting devices using a novel exciplex system. Organic Electronics, 2022, 106, 106536.	1.4	2
116	High barrier properties of transparent thin-film encapsulations for top-emission organic light-emitting diodes. Proceedings of SPIE, 2014, , .	0.8	1
117	A highly transparent laminated composite cathode for organic light-emitting diodes. Applied Physics Letters, 2021, 119, .	1.5	1
118	Complete stress release in monolayer ALD-Al2O3 film based on mechanical equilibrium homeostasis to realize a bending radius of 1mm. Soft Matter, 0, , .	1.2	1
119	White organic light-emitting devices using a thin layer of tris (8-hydroxyquinoline) aluminum doped with 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) as chromaticity-tuning layer. , 2004, , .		0
120	Blue and white organic light-emitting devices based on 2,5,2',5'-tetrakis (4'-biphenylenevinyl)-biphenyl. , 2004, 5280, 712.		0
121	Modeling of transform for external quantum efficiency and power efficiency of electroluminescent devices. , 2005, , .		0
122	Computer simulation of transform for external quantum efficiency and current efficiency of organic electroluminescent devices. , 0, , .		0
123	Blue and white organic light-emitting devices employing dimeric trimeric phenylenvinylene derivative as single-emitting component. , 2006, , .		0
124	Bright white light electroluminescent devices based on efficient management of singlet and triplet excitons. Optical and Quantum Electronics, 2008, 40, 967-972.	1.5	0
125	Reduced Efficiency Roll-Off in White Phosphorescent Organic Light-Emitting Diodes Based on Double Emission Layers. Molecules, 2019, 24, 211.	1.7	0
126	A simple approach employing energy-down-shift Y ₃ Al ₅ O ₁₂ :Ce ³⁺ phosphor for realization of flexible white light emitting diodes. Semiconductor Science and Technology, 2020, 35, 015010.	1.0	0

#	Article	IF	CITATIONS
127	Color-stable white phosphorescent organic light-emitting diodes based on double bipolar mixed-host layer. Journal Physics D: Applied Physics, 2020, 53, 255106.	1.3	Ο
128	(Invited) Atomic Layer Deposition of Functional Films for Organic Optoelectronic Devices. ECS Meeting Abstracts, 2020, MA2020-02, 1657-1657.	0.0	0