Enamul Haque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3427473/publications.pdf

Version: 2024-02-01

43 papers

5,377 citations

28 h-index 288905 40 g-index

43 all docs 43 docs citations

43 times ranked

7846 citing authors

#	Article	IF	CITATIONS
1	Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). Journal of Hazardous Materials, 2011, 185, 507-511.	6.5	977
2	Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. Journal of Hazardous Materials, 2010, 181, 535-542.	6.5	585
3	Edge-enriched graphene quantum dots for enhanced photo-luminescence and supercapacitance. Nanoscale, 2014, 6, 11988-11994.	2.8	406
4	Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Composites Science and Technology, 2014, 98, 1-8.	3.8	346
5	Dichotomous adsorption behaviour of dyes on an amino-functionalised metal–organic framework, amino-MIL-101(Al). Journal of Materials Chemistry A, 2014, 2, 193-203.	5.2	343
6	Synthesis of a Metal–Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study. Chemistry - A European Journal, 2010, 16, 1046-1052.	1.7	294
7	Chemical and Thermal Stability of Isotypic Metal–Organic Frameworks: Effect of Metal Ions. Chemistry - A European Journal, 2011, 17, 6437-6442.	1.7	264
8	High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. Journal of Colloid and Interface Science, 2013, 410, 43-51.	5.0	259
9	Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid and Polymer Science, 2016, 294, 1599-1610.	1.0	207
10	Recent Advances in Graphene Quantum Dots: Synthesis, Properties, and Applications. Small Methods, 2018, 2, 1800050.	4.6	166
11	Zebrafish as a Model to Evaluate Nanoparticle Toxicity. Nanomaterials, 2018, 8, 561.	1.9	126
12	Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol. Journal of Materials Chemistry, 2010, 20, 10801.	6.7	125
13	Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Advances, 2017, 7, 17950-17958.	1.7	123
14	Self-Assembled N/S Codoped Flexible Graphene Paper for High Performance Energy Storage and Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2078-2087.	4.0	113
15	Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food. Food Chemistry, 2017, 221, 751-759.	4.2	112
16	Synthesis of isostructural metal–organic frameworks, CPO-27s, with ultrasound, microwave, and conventional heating: Effect of synthesis methods and metal ions. Chemical Engineering Journal, 2011, 173, 866-872.	6.6	94
17	Rapid syntheses of a metal–organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses. Physical Chemistry Chemical Physics, 2010, 12, 2625.	1.3	82
18	Nitrogen doped graphene via thermal treatment of composite solid precursors as a high performance supercapacitor. RSC Advances, 2015, 5, 30679-30686.	1.7	64

#	Article	IF	Citations
19	Protein Conformational Modifications and Kinetics of Waterâ^Protein Interactions in Milk Protein Concentrate Powder upon Aging: Effect on Solubility. Journal of Agricultural and Food Chemistry, 2010, 58, 7748-7755.	2.4	58
20	Nanoarchitectured Grapheneâ€Organic Frameworks (GOFs): Synthetic Strategies, Properties, and Applications. Chemistry - an Asian Journal, 2018, 13, 3561-3574.	1.7	56
21	Facile Purification of Porous Metal Terephthalates with Ultrasonic Treatment in the Presence of Amides. Chemistry - A European Journal, 2009, 15, 11730-11736.	1.7	50
22	Synthesis of isostructural porous metal-benzenedicarboxylates: Effect of metal ions on the kinetics of synthesis. CrystEngComm, 2010, 12, 2749.	1.3	47
23	Syntheses of Metal–Organic Frameworks and Aluminophosphates under Microwave Heating: Quantitative Analysis of Accelerations. Crystal Growth and Design, 2011, 11, 4413-4421.	1.4	44
24	Exciton-Driven Chemical Sensors Based on Excitation-Dependent Photoluminescent Two-Dimensional SnS. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42462-42468.	4.0	42
25	Adsorption of Phenol on Mesoporous Carbon CMK-3: Effect of Textural Properties. Bulletin of the Korean Chemical Society, 2010, 31, 1638-1642.	1.0	42
26	Deciphering the Role of Quaternary N in O ₂ Reduction over Controlled N-Doped Carbon Catalysts. Chemistry of Materials, 2020, 32, 1384-1392.	3.2	41
27	Boronâ€Functionalized Graphene Oxideâ€Organic Frameworks for Highly Efficient CO ₂ Capture. Chemistry - an Asian Journal, 2017, 12, 283-288.	1.7	40
28	A quadrafunctional electrocatalyst of nickel/nickel oxide embedded N-graphene for oxygen reduction, oxygen evolution, hydrogen evolution and hydrogen peroxide oxidation reactions. Sustainable Energy and Fuels, 2018, 2, 2081-2089.	2.5	34
29	Low dimensional materials for glucose sensing. Nanoscale, 2021, 13, 11017-11040.	2.8	30
30	Ageingâ€induced solubility loss in milk protein concentrate powder: effect of protein conformational modifications and interactions with water. Journal of the Science of Food and Agriculture, 2011, 91, 2576-2581.	1.7	27
31	Synergistically enhanced electrochemical (ORR) activity of graphene oxide using boronic acid as an interlayer spacer. Chemical Communications, 2013, 49, 11068.	2.2	27
32	Kinetics of enthalpy relaxation of milk protein concentrate powder upon ageing and its effect on solubility. Food Chemistry, 2012, 134, 1368-1373.	4.2	25
33	Coâ€Doping of Activated Graphene for Synergistically Enhanced Electrocatalytic Oxygen Reduction Reaction. ChemSusChem, 2015, 8, 4040-4048.	3.6	22
34	N-doped reduced graphene oxide (rGO) wrapped carbon microfibers as binder-free electrodes for flexible fibre supercapacitors and sodium-ion batteries. Journal of Energy Storage, 2021, 37, 102453.	3.9	22
35	Facile synthesis of cuprous oxide using ultrasound, microwave and electric heating: effect of heating methods on synthesis kinetics, morphology and yield. CrystEngComm, 2011, 13, 4060.	1.3	20
36	Change in molecular structure and dynamics of protein in milk protein concentrate powder upon ageing by solid-state carbon NMR. Food Hydrocolloids, 2015, 44, 66-70.	5.6	19

#	Article	IF	CITATIONS
37	Tuning graphene for energy and environmental applications: Oxygen reduction reaction and greenhouse gas mitigation. Journal of Power Sources, 2016, 328, 472-481.	4.0	16
38	Identification of electrocatalytic oxygen reduction (ORR) activity ofÂboron in graphene oxide; incorporated as a charge-adsorbate and/or substitutional p-type dopant. Materials Chemistry and Physics, 2018, 207, 380-388.	2.0	9
39	Nanoarchitectured Nitrogen-Doped Graphene/Carbon Nanotube as High Performance Electrodes for Solid State Supercapacitors, Capacitive Deionization, Li-Ion Battery, and Metal-Free Bifunctional Electrocatalysis. ACS Applied Energy Materials, 0, , .	2.5	9
40	Recent advances in the tuning of the organic framework materials $\hat{a}\in$ The selections of ligands, reaction conditions, and post-synthesis approaches. Journal of Colloid and Interface Science, 2022, 623, 378-404.	5.0	7
41	Inside Cover: Chemical and Thermal Stability of Isotypic Metal–Organic Frameworks: Effect of Metal Ions (Chem. Eur. J. 23/2011). Chemistry - A European Journal, 2011, 17, 6278-6278.	1.7	3
42	Hybrid Wind-Diesel Remote Area Power Systems with Hydrogen-based Energy Storage System. , 2018, , .		1
43	Thermal Transformation of End-of-Life Latex to Valuable Materials. Journal of Composites Science, 2020, 4, 166.	1.4	0