
Youichi Tsuchiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3427131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Managing Intersegmental Chargeâ€Transfer and Multiple Resonance Alignments of D ₃ â€A Typed TADF Emitters for Red OLEDs with Improved Efficiency and Color Purity. Advanced Optical Materials, 2022, 10, 2101789.	3.6	41
2	Carbazole-2-carbonitrile as an acceptor in deep-blue thermally activated delayed fluorescence emitters for narrowing charge-transfer emissions. Chemical Science, 2022, 13, 7821-7828.	3.7	8
3	Enhancing spin-orbital coupling in deep-blue/blue TADF emitters by minimizing the distance from the heteroatoms in donors to acceptors. Chemical Engineering Journal, 2021, 420, 127591.	6.6	47
4	lsotope Effect of Host Material on Device Stability of Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Diodes. Small Science, 2021, 1, 2000057.	5.8	22
5	Highly Efficient Nearâ€Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angewandte Chemie - International Edition, 2021, 60, 8477-8482.	7.2	130
6	Investigating HOMO Energy Levels of Terminal Emitters for Realizing Highâ€Brightness and Stable TADFâ€Assisted Fluorescence Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2021, 7, 2001090.	2.6	55
7	Thermally Activated Delayed Fluorescence Properties of Trioxoazatriangulene Derivatives Modified with Electron Donating Groups. Advanced Optical Materials, 2021, 9, 2002174.	3.6	35
8	Planar and Rigid Pyrazineâ€Based TADF Emitter for Deep Blue Bright Organic Lightâ€Emitting Diodes. European Journal of Organic Chemistry, 2021, 2021, 2285-2293.	1.2	17
9	Highly Efficient Nearâ€Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angewandte Chemie, 2021, 133, 8558-8563.	1.6	23
10	Advances in Thermally Activated Delayed Fluorescent Materials and the Cutting Edge of High Performance OLEDs. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 269-276.	0.0	0
11	Thermally-activated Delayed Fluorescence for Light-emitting Devices. Chemistry Letters, 2021, 50, 938-948.	0.7	103
12	Tetrabenzo[<i>a</i> , <i>c</i>]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angewandte Chemie, 2021, 133, 19513-19522.	1.6	4
13	Tetrabenzo[<i>a</i> , <i>c</i>]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angewandte Chemie - International Edition, 2021, 60, 19364-19373.	7.2	67
14	Innentitelbild: An Elementâ€ s ubstituted Cyclobutadiene Exhibiting Highâ€Energy Blue Phosphorescence (Angew. Chem. 40/2021). Angewandte Chemie, 2021, 133, 21766-21766.	1.6	0
15	An Elementâ€5ubstituted Cyclobutadiene Exhibiting Highâ€Energy Blue Phosphorescence. Angewandte Chemie, 2021, 133, 21988-21994.	1.6	8
16	An Elementâ€ S ubstituted Cyclobutadiene Exhibiting Highâ€Energy Blue Phosphorescence. Angewandte Chemie - International Edition, 2021, 60, 21817-21823.	7.2	15
17	Visualization of Frontier Molecular Orbital Separation of a Single Thermally Activated Delayed Fluorescence Emitter by STM. Journal of Physical Chemistry Letters, 2021, 12, 7512-7518.	2.1	9
18	Exact Solution of Kinetic Analysis for Thermally Activated Delayed Fluorescence Materials. Journal of Physical Chemistry A, 2021, 125, 8074-8089.	1.1	47

#	Article	IF	CITATIONS
19	Characterizing the Conformational Distribution in an Amorphous Film of an Organic Emitter and Its Application in a "Selfâ€Doping―Organic Lightâ€Emitting Diode. Angewandte Chemie, 2021, 133, 26082-260) 87 .	8
20	2,6â€Dicarbonitrile Diphenylâ€1λ ⁵ â€Phosphinine (DCNP)—A Robust Conjugated Building Block fo Multiâ€Functional Dyes Exhibiting Tunable Amplified Spontaneous Emission. Advanced Optical Materials, 2021, 9, 2101122.	or 3.6	11
21	Characterizing the Conformational Distribution in an Amorphous Film of an Organic Emitter and Its Application in a "Selfâ€Doping―Organic Lightâ€Emitting Diode. Angewandte Chemie - International Edition, 2021, 60, 25878-25883.	7.2	35
22	Partial Modification of Electron-withdrawing Groups in Thermally-activated Delayed Fluorescence Materials Aimed to Improve Efficiency and Stability. Chemistry Letters, 2020, 49, 1189-1193.	0.7	0
23	Utilization of Multi-Heterodonors in Thermally Activated Delayed Fluorescence Molecules and Their High Performance Bluish-Green Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 9498-9506.	4.0	18
24	Solution-Processed Dendrimer-Based TADF Materials for Deep-Red OLEDs. Macromolecules, 2020, 53, 10375-10385.	2.2	25
25	Intramolecular-rotation driven triplet-to-singlet upconversion and fluctuation induced fluorescence activation in linearly connected donor–acceptor molecules. Journal of Chemical Physics, 2020, 153, 204702.	1.2	15
26	Hydrogen bond-modulated molecular packing and its applications in high-performance non-doped organic electroluminescence. Materials Horizons, 2020, 7, 2734-2740.	6.4	51
27	Sub-Microsecond TADF Emission in D-D′-A Emitters. Chemistry Letters, 2020, 49, 932-935.	0.7	8
28	Molecular Design Based on Donor-Weak Donor Scaffold for Blue Thermally-Activated Delayed Fluorescence Designed by Combinatorial DFT Calculations. Frontiers in Chemistry, 2020, 8, 403.	1.8	18
29	Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nature Communications, 2020, 11, 1765.	5.8	287
30	Enhanced near-infrared electroluminescence from a neodymium complex in organic light-emitting diodes with a solution-processed exciplex host. Applied Physics Letters, 2019, 114, .	1.5	13
31	Turn on of sky-blue thermally activated delayed fluorescence and circularly polarized luminescence (CPL) <i>via</i> increased torsion by a bulky carbazolophane donor. Chemical Science, 2019, 10, 6689-6696.	3.7	135
32	Intramolecular Noncovalent Interactions Facilitate Thermally Activated Delayed Fluorescence (TADF). Journal of Physical Chemistry Letters, 2019, 10, 3260-3268.	2.1	68
33	Photostable and highly emissive glassy organic dots exhibiting thermally activated delayed fluorescence. Chemical Communications, 2019, 55, 5215-5218.	2.2	17
34	Thermally activated delayed fluorescence with 7% external quantum efficiency from a light-emitting electrochemical cell. Nature Communications, 2019, 10, 5307.	5.8	55
35	High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nature Photonics, 2018, 12, 98-104.	15.6	421
36	Near-Infrared Electroluminescence and Low Threshold Amplified Spontaneous Emission above 800 nm from a Thermally Activated Delayed Fluorescent Emitter. Chemistry of Materials, 2018, 30, 6702-6710.	3.2	119

Үоиісні Тѕисніча

#	Article	IF	CITATIONS
37	Trifluoromethane modification of thermally activated delayed fluorescence molecules for high-efficiency blue organic light-emitting diodes. Chemical Communications, 2018, 54, 8261-8264.	2.2	44
38	Optoelectronic devices of highly efficient luminogens in the solid state: general discussion. Faraday Discussions, 2017, 196, 455-460.	1.6	0
39	Near infrared electroluminescence from Nd(TTA) 3 phen in solution-processed small molecule organic light-emitting diodes. Organic Electronics, 2017, 44, 50-58.	1.4	33
40	Advanced functional luminogens in the solid-state: general discussion. Faraday Discussions, 2017, 196, 317-334.	1.6	0
41	New and efficient fluorescent and phosphorescent luminogens: general discussion. Faraday Discussions, 2017, 196, 191-218.	1.6	0
42	Highlights from Faraday Discussion: aggregation-induced emission. Chemical Communications, 2017, 53, 3158-3164.	2.2	7
43	Biomedical applications of luminogens: general discussion. Faraday Discussions, 2017, 196, 403-414.	1.6	0
44	A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures. Advanced Materials, 2017, 29, 1702767.	11.1	215
45	Centrifugal-Coated Quasi-Two-Dimensional Perovskite CsPb ₂ Br ₅ Films for Efficient and Stable Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 5415-5421.	2.1	71
46	Tunable OLEDs: Color Tuning of Avobenzone Boron Difluoride as an Emitter to Achieve Fullâ€Color Emission (Adv. Funct. Mater. 37/2016). Advanced Functional Materials, 2016, 26, 6847-6847.	7.8	0
47	Color Tuning of Avobenzone Boron Difluoride as an Emitter to Achieve Full olor Emission. Advanced Functional Materials, 2016, 26, 6703-6710.	7.8	81
48	Conformation Control of a Conjugated Polymer through Complexation with Bile Acids Generates Its Novel Spectral and Morphological Properties. Langmuir, 2016, 32, 12403-12412.	1.6	0
49	One-pot Optical Sensing of Keto Acids through the Combination of the Oxime-click Reaction and Aggregation-induced Emission (AIE). Chemistry Letters, 2015, 44, 812-814.	0.7	6
50	Molecular recognition directed supramolecular control over perylene-bisimide aggregation resulting in aggregation induced enhanced emission (AIEE) and induced chiral amplification. Journal of Materials Chemistry C, 2015, 3, 2310-2318.	2.7	20
51	Tailoring of the desired selectivity and the turn-on detection range in a self-assembly-based fluorescence sensory system. Chemical Science, 2015, 6, 3863-3867.	3.7	26
52	Creation of Circularly Polarized Luminescence from an Achiral Polyfluorene Derivative through Complexation with Helixâ€Forming Polysaccharides: Importance of the <i>meta</i> ‣inkage Chain for Helix Formation. Chemistry - an Asian Journal, 2014, 9, 218-222.	1.7	71
53	Translation of Dicarboxylate Structural Information to Fluorometric Optical Signals through Selfâ€Assembly of Guanidiniumâ€Tethered Oligophenylenevinylene. Chemistry - A European Journal, 2014, 20, 13938-13944.	1.7	24
54	Nucleotide sensing with a perylene-based molecular receptor via amplified fluorescence quenching. Organic and Biomolecular Chemistry, 2014, 12, 561-565.	1.5	24

YOUICHI TSUCHIYA

#	Article	IF	CITATIONS
55	Cyclizationâ€Induced Turnâ€On Fluorescence System Applicable to Dicarboxylate Sensing. Chemistry - A European Journal, 2014, 20, 381-384.	1.7	56
56	Selective Detection of NADPH among Four Pyridineâ€Nucleotide Cofactors by a Fluorescent Probe Based on Aggregationâ€Induced Emission. Macromolecular Rapid Communications, 2013, 34, 779-784.	2.0	31
57	Dye-sensitised preparation of chiral plasmonic Ag nanoparticles on helical polysaccharides. Supramolecular Chemistry, 2013, 25, 748-755.	1.5	3
58	Cyclodextrinâ€Assisted Synthesis of a Metallosupramolecular Terbium(III) Polymer and Its Fluorescence Properties and Chiral Recognition. Chemistry - A European Journal, 2013, 19, 15485-15488.	1.7	11
59	Stereochemistry-Dependent, Mechanoresponsive Supramolecular Host Assemblies for Fullerenes: A Guest-Induced Enhancement of Thixotropy. Journal of the American Chemical Society, 2012, 134, 2161-2171.	6.6	87
60	Nonlinear fluorescence response driven by ATP-induced self-assembly of guanidinium-tethered tetraphenylethene. Chemical Communications, 2012, 48, 8090.	2.2	90
61	Unexpected chiral induction from achiral cationic polythiophene aggregates and its application to the sugar pattern recognition. Chemical Communications, 2012, 48, 7091.	2.2	21
62	Supramolecular Dye Inclusion Single Crystals Created from 2,3,6â€Trimethylâ€Î²â€cyclodextrin and Porphyrins. Chemistry - A European Journal, 2012, 18, 456-465.	1.7	32
63	Creation of Chiral Thixotropic Gels through a Crown–Ammonium Interaction and their Application to a Memoryâ€Erasing Recycle System. Chemistry - A European Journal, 2012, 18, 2832-2838.	1.7	56
64	Fine Wettability Control Created by a Photochemical Combination Method for Inkjet Printing on Selfâ€Assembled Monolayers. Advanced Materials, 2012, 24, 968-972.	11.1	14
65	Heat and light dual switching of a single-walled carbon nanotube/thermo-responsive helical polysaccharide complex: a new responsive system applicable to photodynamic therapy. Chemical Communications, 2011, 47, 7065.	2.2	27
66	Facile fabrication of CD-active 1-D polypyrrole by the templating effect of a helix-forming anionic polysaccharide. Supramolecular Chemistry, 2011, 23, 239-243.	1.5	2
67	A pH-responsive carboxylic β-1,3-glucan polysaccharide for complexation with polymeric guests. Organic and Biomolecular Chemistry, 2011, 9, 4266.	1.5	26
68	Single-crystal Structure of Porphyrin Bicapped with Trimethyl-β-cyclodextrins: A Novel Dye-oriented Material. Chemistry Letters, 2011, 40, 99-101.	0.7	19
69	Ratiometric Fluorescent Sensor for 2,4,6-Trinitrotoluene Designed Based on Energy Transfer between Size-different Quantum Dots. Chemistry Letters, 2010, 39, 156-158.	0.7	15
70	A Polysaccharideâ€Based Container Transportation System Powered by Molecular Motors. Angewandte Chemie - International Edition, 2010, 49, 724-727.	7.2	13
71	Thermo- and Solvent-Responsive Polymer Complex Created from Supramolecular Complexation between a Helix-Forming Polysaccharide and a Cationic Polythiophene. Journal of the American Chemical Society, 2010, 132, 13928-13935.	6.6	83
72	On the Helical Motif of the Complexes Created by Association of Helixâ€Forming Schizophyllan (SPG) and Helixâ€Forming Polythiophene Derivatives. Chemistry - A European Journal, 2009, 15, 11221-11228.	1.7	17

Youichi Tsuchiya

#	Article	IF	CITATIONS
73	Quantum Dots Arrangement and Energy Transfer Control via Chargeâ€Transfer Complex Achieved on Poly(Phenylene Ethynylene)/Schizophyllan Nanowires. Chemistry - an Asian Journal, 2009, 4, 1434-1441.	1.7	10
74	Control of polythiophene redox potentials based on supramolecular complexation with helical schizophyllan. Chemical Communications, 2009, , 6086.	2.2	21
75	Alignment of Polysaccharide–SWNT Composites by Metal–Ligand Interactions. Chemistry Letters, 2009, 38, 812-813.	0.7	5
76	Photocurrent Generators Derived from Non-Covalently Assembled Cyclodextrin Nano-System. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 533-538.	0.1	1
77	13C NMR Longitudinal Relaxation Time Studies of a Molecular Tweezers Derived from a Calixarene-Porphyrin Conjugate. Journal of Oleo Science, 2007, 56, 155-158.	0.6	3
78	Carbon-13 NMR Longitudinal Relaxation Time Study of an Ionophoric 1,3-Alternate-Shaped Calix[4]arene Ester. Journal of Oleo Science, 2006, 55, 75-78.	0.6	1
79	Photocurrent Generators Derived from Non-covalently Assembled Porphyrin Conjugate Nano-system. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 409-411.	0.1	2
80	Sodium-23 NMR Studies of Sodium Ion Ensembles with a 1,3-Alternate-Shaped Calix[4]arene. Journal of Oleo Science, 2006, 55, 71-74.	0.6	1
81	Photocurrent-Boosting by Intramembrane Electron Mediation between Titania Nanoparticles Dispersed into Nafiona^Porphyrin Composites. Chemistry of Materials, 2005, 17, 4018-4022.	3.2	11
82	A photocurrent-generator utilising a polyelectrolyte as a matrix of dyes. Journal of Materials Chemistry, 2004, 14, 1128.	6.7	9
83	Improvement of Quantum Yields for Photoinduced Energy/Electron Transfer by Isolation of Self-Aggregative Zinc Tetraphenyl Porphyrin-Pendant Polymer Using Cyclodextrin Inclusion in Aqueous Solution. Journal of Physical Chemistry B, 2003, 107, 11261-11266.	1.2	66