
## Siok, Wt

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3427084/publications.pdf Version: 2024-02-01



SIGK W/T

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Is phonological deficit a necessary or sufficient condition for Chinese reading disability?. Brain and<br>Language, 2022, 226, 105069.                                                               | 1.6 | 3         |
| 2  | A Heteromodal Word-Meaning Binding Site in the Visual Word Form Area under Top-Down<br>Frontoparietal Control. Journal of Neuroscience, 2021, 41, 3854-3869.                                         | 3.6 | 11        |
| 3  | Intracranial recording in patients with aphasia using nanomaterial-based flexible electronics: promises and challenges. Beilstein Journal of Nanotechnology, 2021, 12, 330-342.                      | 2.8 | 1         |
| 4  | Editorial: Reading in the Digital Age: The Impact of Using Digital Devices on Children's Reading, Writing and Thinking Skills. Frontiers in Psychology, 2020, 11, 586118.                            | 2.1 | 3         |
| 5  | A Lifespan fMRI Study of Neurodevelopment Associated with Reading Chinese. Cerebral Cortex, 2020, 30, 4140-4157.                                                                                     | 2.9 | 15        |
| 6  | Abnormal neural response to phonological working memory demands in persistent developmental<br>stuttering. Human Brain Mapping, 2019, 40, 214-225.                                                   | 3.6 | 9         |
| 7  | Differential impacts of different keyboard inputting methods on reading and writing skills. Scientific<br>Reports, 2018, 8, 17183.                                                                   | 3.3 | 3         |
| 8  | A Genome-Wide Association Study Identifies Genetic Variants Associated with Mathematics Ability.<br>Scientific Reports, 2017, 7, 40365.                                                              | 3.3 | 22        |
| 9  | The role of anxiety in stuttering: Evidence from functional connectivity. Neuroscience, 2017, 346, 216-225.                                                                                          | 2.3 | 24        |
| 10 | Altered functional connectivity in persistent developmental stuttering. Scientific Reports, 2016, 6,<br>19128.                                                                                       | 3.3 | 32        |
| 11 | Chinese Character and English Word processing in children's ventral occipitotemporal cortex: fMRI evidence for script invariance. NeuroImage, 2016, 133, 302-312.                                    | 4.2 | 39        |
| 12 | Neural basis for processing hidden complexity indexed by small and finite clauses in Mandarin<br>Chinese. Journal of Neurolinguistics, 2015, 33, 118-127.                                            | 1,1 | 7         |
| 13 | Association study of stuttering candidate genes GNPTAB, GNPTG and NAGPA with dyslexia in Chinese population. BMC Genetics, 2015, 16, 7.                                                              | 2.7 | 9         |
| 14 | Atypical lateralization of phonological working memory in developmental dyslexia. Journal of<br>Neurolinguistics, 2015, 33, 67-77.                                                                   | 1.1 | 25        |
| 15 | Association of specific language impairment candidate genes CMIP and ATP2C2 with developmental dyslexia in Chinese population. Journal of Neurolinguistics, 2015, 33, 163-171.                       | 1.1 | 6         |
| 16 | Stuttering candidate genes DRD2 but not SLC6A3 is associated with developmental dyslexia in Chinese population. Behavioral and Brain Functions, 2014, 10, 29.                                        | 3.3 | 12        |
| 17 | Association study of developmental dyslexia candidate genes DCDC2 and KIAA0319 in Chinese<br>population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 627-634. | 1.7 | 21        |
| 18 | China's language input system in the digital age affects children's reading development. Proceedings<br>of the National Academy of Sciences of the United States of America, 2013, 110, 1119-1123.   | 7.1 | 69        |

Siok, Wt

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Lateralization of the arcuate fasciculus and its differential correlation with reading ability between young learners and experienced readers: A diffusion tensor tractography study in a chinese cohort. Human Brain Mapping, 2011, 32, 2054-2063. | 3.6  | 29        |
| 20 | Activity levels in the left hemisphere caudate–fusiform circuit predict how well a second language<br>will be learned. Proceedings of the National Academy of Sciences of the United States of America, 2011,<br>108, 2540-2544.                    | 7.1  | 52        |
| 21 | Language regions of brain are operative in color perception. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8140-8145.                                                                                 | 7.1  | 101       |
| 22 | Developmental dyslexia is characterized by the co-existence of visuospatial and phonological disorders in Chinese children. Current Biology, 2009, 19, R890-R892.                                                                                   | 3.9  | 95        |
| 23 | A structural–functional basis for dyslexia in the cortex of Chinese readers. Proceedings of the<br>National Academy of Sciences of the United States of America, 2008, 105, 5561-5566.                                                              | 7.1  | 231       |
| 24 | Functional and morphometric brain dissociation between dyslexia and reading ability. Proceedings of the United States of America, 2007, 104, 4234-4239.                                                                                             | 7.1  | 342       |
| 25 | Brain-behavior relations in reading and dyslexia: Implications of Chinese results. Brain and Language, 2006, 98, 344-346.                                                                                                                           | 1.6  | 17        |
| 26 | Neural Basis of Dyslexia: A Comparison between Dyslexic and Nondyslexic Children Equated for<br>Reading Ability. Journal of Neuroscience, 2006, 26, 10700-10708.                                                                                    | 3.6  | 202       |
| 27 | Reading depends on writing, in Chinese. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8781-8785.                                                                                                      | 7.1  | 390       |
| 28 | Children's Reading Performance is Correlated with White Matter Structure Measured by Diffusion Tensor Imaging. Cortex, 2005, 41, 354-363.                                                                                                           | 2.4  | 338       |
| 29 | Biological abnormality of impaired reading is constrained by culture. Nature, 2004, 431, 71-76.                                                                                                                                                     | 27.8 | 422       |
| 30 | Neural systems of second language reading are shaped by native language. Human Brain Mapping, 2003,<br>18, 158-166.                                                                                                                                 | 3.6  | 317       |
| 31 | Distinct brain regions associated with syllable and phoneme. Human Brain Mapping, 2003, 18, 201-207.                                                                                                                                                | 3.6  | 93        |
| 32 | The role of phonological awareness and visual-orthographic skills in Chinese reading acquisition<br>Developmental Psychology, 2001, 37, 886-899.                                                                                                    | 1.6  | 346       |
| 33 | Semantic Radicals Contribute to the Visual Identification of Chinese Characters. Journal of Memory and Language, 1999, 40, 559-576.                                                                                                                 | 2.1  | 137       |
| 34 | The role of component function in visual recognition of Chinese characters Journal of Experimental Psychology: Learning Memory and Cognition, 1997, 23, 776-781.                                                                                    | 0.9  | 55        |
| 35 | Activation of phonological codes before access to character meaning in written Chinese Journal of Experimental Psychology: Learning Memory and Cognition, 1996, 22, 865-882.                                                                        | 0.9  | 86        |
|    |                                                                                                                                                                                                                                                     |      |           |

How the brain reads the Chinese language: recent neuroimaging findings. , 0, , 358-371.

1