
Grant R Singleton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3426868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conservation agriculture practices have changed habitat use by rodent pests: implications for management of feral house mice. Journal of Pest Science, 2022, 95, 493-503.	1.9	21
2	Sustainable rice production in Myanmar impacts on food security and livelihood changes. International Journal of Agricultural Sustainability, 2022, 20, 88-102.	1.3	7
3	Impact of fertility versus mortality control on the demographics of <i>Mastomys natalensis</i> in maize fields. Integrative Zoology, 2022, 17, 1028-1040.	1.3	10
4	Reproductive responses of rice field rats (<i>Rattus argentiventer</i>) following treatment with the contraceptive hormones, quinestrol and levonorgestrol. Integrative Zoology, 2022, 17, 1017-1027.	1.3	8
5	Spatio-temporal analysis of water quality for pesticides and other agricultural pollutants in Deduru Oya river basin of Sri Lanka. Journal of Cleaner Production, 2022, 330, 129897.	4.6	39
6	Assessing Potential Environmental Impacts of Pesticide Usage in Paddy Ecosystems: A Case Study in the Deduru Oya River Basin, Sri Lanka. Environmental Toxicology and Chemistry, 2022, 41, 343-355.	2.2	13
7	Revisiting yield gaps and the scope for sustainable intensification for irrigated lowland rice in Southeast Asia. Agricultural Systems, 2022, 198, 103383.	3.2	11
8	Optimizing the capture of neophobic rice field rats in lowland Asian rice ecosystems. Pest Management Science, 2022, 78, 4252-4260.	1.7	1
9	Developmental assays using invasive cane toads, Rhinella marina, reveal safety concerns of a common formulation of the rice herbicide, butachlor. Environmental Pollution, 2021, 272, 115955.	3.7	13
10	Rodent management and cereal production in Asia: Balancing food security and conservation. Pest Management Science, 2021, 77, 4249-4261.	1.7	21
11	Small mammal communities, associated damage to rice and damage prevention in smallholder rice storage facilities in Sri Lanka. Crop Protection, 2021, 145, 105638.	1.0	5
12	Unpacking the Processes that Catalyzed the Adoption of Best Management Practices for Lowland Irrigated Rice in the Mekong Delta. Agronomy, 2021, 11, 1707.	1.3	19
13	Revisiting the Pneumocystis host specificity paradigm and transmission ecology in wild Southeast Asian rodents. Infection, Genetics and Evolution, 2021, 93, 104978.	1.0	6
14	Population cycles and outbreaks of small rodents: ten essential questions we still need to solve. Oecologia, 2021, 195, 601-622.	0.9	68
15	Assessing alternative crop establishment methods with a sustainability lens in rice production systems of Eastern India. Journal of Cleaner Production, 2020, 244, 118835.	4.6	59
16	Assessment of post-harvest losses and carbon footprint in intensive lowland rice production in Myanmar. Scientific Reports, 2020, 10, 19797.	1.6	15
17	Rodent damage to rice crops is not affected by the water-saving technique, alternate wetting and drying. Journal of Pest Science, 2020, 93, 1431-1442.	1.9	7
18	Advances in understanding rodent pests affecting cereal grains. Burleigh Dodds Series in Agricultural Science, 2020, , 93-122.	0.1	3

2

#	Article	IF	CITATIONS
19	New records of very high nitrous oxide fluxes from rice cannot be generalized for water management and climate impacts. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1464-1465.	3.3	14
20	Economic and environmental indicators of sustainable rice cultivation: A comparison across intensive irrigated rice cropping systems in six Asian countries. Ecological Indicators, 2019, 105, 199-214.	2.6	75
21	Interactions between rodents and weeds in a lowland rice agroâ€ecosystem: the need for an integrated approach to management. Integrative Zoology, 2019, 14, 396-409.	1.3	10
22	Ecosystem hero and villain: Native frog consumes rice pests, while the invasive cane toad feasts on beneficial arthropods. Agriculture, Ecosystems and Environment, 2019, 279, 100-108.	2.5	15
23	The application of best management practices increases the profitability and sustainability of rice farming in the central plains of Thailand. Field Crops Research, 2018, 220, 78-87.	2.3	37
24	On-farm assessment of different rice crop management practices in the Mekong Delta, Vietnam, using sustainability performance indicators. Field Crops Research, 2018, 229, 103-114.	2.3	55
25	Post-harvest impacts of rodents in Myanmar; how much rice do they eat and damage?. Pest Management Science, 2017, 73, 318-324.	1.7	9
26	Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agricultural Water Management, 2017, 184, 191-200.	2.4	106
27	Adaptive Research with and without a Learning Alliance in Myanmar: Differences in learning process and agenda for participatory research. Njas - Wageningen Journal of Life Sciences, 2017, 81, 33-42.	7.9	16
28	The stadium effect: rodent damage patterns in rice fields explored using givingâ€up densities. Integrative Zoology, 2017, 12, 438-445.	1.3	17
29	The need to implement the landscape of fear within rodent pest management strategies. Pest Management Science, 2017, 73, 2397-2402.	1.7	37
30	Competition and pesticide exposure affect development of invasive (Rhinella marina) and native (Fejervarya vittigera) rice paddy amphibian larvae. Ecotoxicology, 2017, 26, 1293-1304.	1.1	16
31	A systematic review of rodent pest research in Afro-Malagasy small-holder farming systems: Are we asking the right questions?. PLoS ONE, 2017, 12, e0174554.	1.1	47
32	Control of rodent pests in rice cultivation. Burleigh Dodds Series in Agricultural Science, 2017, , 343-376.	0.1	7
33	Can a native rodent species limit the invasive potential of a nonâ€native rodent species in tropical agroforest habitats?. Pest Management Science, 2016, 72, 1168-1177.	1.7	3
34	Yield gaps in rice-based farming systems: Insights from local studies and prospects for future analysis. Field Crops Research, 2016, 194, 43-56.	2.3	93
35	Farmers, institutions and technology in agricultural change processes: outcomes from Adaptive Research on rice production in Sulawesi, Indonesia. International Journal of Agricultural Sustainability, 2016, 14, 166-186.	1.3	19
36	Early harvest of monsoon rice to address seasonal hunger in northwest Bangladesh. Food Security, 2016, 8, 443-457.	2.4	1

#	Article	IF	CITATIONS
37	Population ecology of the Asian house rat (Rattus tanezumi) in complex lowland agroecosystems in the Philippines. Wildlife Research, 2015, 42, 165.	0.7	12
38	A meeting of mice and men: rodent impacts on food security, human diseases and wildlife conservation; ecosystem benefits; fascinating biological models. Wildlife Research, 2015, 42, 83.	0.7	9
39	Estimating rodent losses to stored rice as a means to assess efficacy of rodent management. Wildlife Research, 2015, 42, 132.	0.7	26
40	Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research, 2015, 170, 95-108.	2.3	356
41	Ecologically-Based Rodent Management 15 Years On: A Pathway to Sustainable Agricultural Production. Proceedings of the Vertebrate Pest Conference, 2014, 26, .	0.1	1
42	Is quantity or quality of food influencing the reproduction of rice-field rats in the Philippines?. Wildlife Research, 2014, 41, 56.	0.7	20
43	Habitat manipulation in lowland rice-coconut cropping systems of the Philippines-an effective rodent pest management strategy?. Pest Management Science, 2014, 70, 939-945.	1.7	10
44	Can rodent outbreaks be driven by major climatic events? Evidence from cyclone Nargis in the Ayeyawady Delta, Myanmar. Pest Management Science, 2013, 69, 378-385.	1.7	19
45	Molecular characterization of Cryptosporidium spp. from wild rats and mice from rural communities in the Philippines. Infection, Genetics and Evolution, 2013, 16, 5-12.	1.0	52
46	Natal nest locations of the Asian house rat (Rattus tanezumi) in lowland rice–coconut cropping systems: a coconut penthouse or rice bunds with water frontage?. Wildlife Research, 2012, 39, 496.	0.7	11
47	Breeding ecology of rice field rats, Rattus argentiventer and R. tanezumi in lowland irrigated rice systems in the Philippines. Agriculture, Ecosystems and Environment, 2012, 161, 39-45.	2.5	22
48	Can media campaign messages influence change towards ecologically based rodent management?. Wildlife Research, 2011, 38, 579.	0.7	13
49	Rodent biology and management – who is outsmarting whom?. Wildlife Research, 2011, 38, 539.	0.7	3
50	Knowledge, attitudes and practices of farmers on rodent pests and their management in the lowlands of the Sierra Madre Biodiversity Corridor, Philippines. Crop Protection, 2011, 30, 147-154.	1.0	28
51	Can humans outsmart rodents? Learning to work collectively and strategically. Wildlife Research, 2011, 38, 568.	0.7	27
52	Ecologically based management of rodents in lowland irrigated rice fields in Indonesia. Wildlife Research, 2010, 37, 418.	0.7	29
53	Impacts of rodent outbreaks on food security in Asia. Wildlife Research, 2010, 37, 355.	0.7	94
54	The Year of the Rat ends—time to fight hunger!. Pest Management Science, 2009, 65, 351-352.	1.7	74

#	Article	IF	CITATIONS
55	Rodent-borne diseases and their risks for public health. Critical Reviews in Microbiology, 2009, 35, 221-270.	2.7	716
56	The transmission rate of MCMV in house mice in pens: implications for virally vectored immunocontraception. Wildlife Research, 2009, 36, 386.	0.7	5
57	Farmers' knowledge, attitudes, and practices for rodent management in Myanmar. International Journal of Pest Management, 2008, 54, 69-76.	0.9	33
58	Fertility control of rodent pests. Wildlife Research, 2008, 35, 487.	0.7	42
59	PREVALENCE OF MOUSE MAMMARY TUMOR VIRUS (MMTV) IN WILD HOUSE MICE (MUS MUSCULIS) IN SOUTHEASTERN AUSTRALIA. Journal of Wildlife Diseases, 2007, 43, 668-674.	0.3	6
60	The Secret World of Wild Mice. , 2007, , 25-51.		36
61	The rodent species of the Ifugao Rice Terraces, Philippines–Âtarget or non-target species for management?. International Journal of Pest Management, 2007, 53, 139-146.	0.9	19
62	Is the reproductive potential of wild house mice regulated by extrinsic or intrinsic factors?. Austral Ecology, 2007, 32, 202-209.	0.7	11
63	Landscape ecology of house mouse outbreaks in south-eastern Australia. Journal of Applied Ecology, 2007, 44, 644-652.	1.9	22
64	Cross-strain protection reduces effectiveness of virally vectored fertility control: results from individual-based multistrain models. Journal of Applied Ecology, 2007, 44, 1252-1262.	1.9	9
65	Social and cultural dimensions of rodent pest management. Integrative Zoology, 2007, 2, 174-183.	1.3	26
66	Unwanted and unintended effects of culling: A case for ecologicallyâ€based rodent management. Integrative Zoology, 2007, 2, 247-259.	1.3	87
67	Relationship between abundance of rodents and damage to agricultural crops. Agriculture, Ecosystems and Environment, 2007, 120, 405-415.	2.5	80
68	Estimating The Abundance Of Mouse Populations Of Known Size: Promises And Pitfalls Of New Methods. , 2006, 16, 829-837.		32
69	Self-regulation within outbreak populations of feral house mice: a test of alternative models. Journal of Animal Ecology, 2006, 75, 584-594.	1.3	52
70	ECOLOGICALLY BASED MANAGEMENT OF RODENTS IN THE REAL WORLD: APPLIED TO A MIXED AGROECOSYSTEM IN VIETNAM. , 2006, 16, 2000-2010.		64
71	Parasites and pest population management. , 2006, , 565-591.		1
72	Predicting the effect of immunocontraceptive recombinant murine cytomegalovirus on population outbreaks of house mice (Mus musculus domesticus) in mallee wheatlands. Wildlife Research, 2005, 32, 631.	0.7	13

#	Article	IF	CITATIONS
73	Transmission of two Australian strains of murine cytomegalovirus (MCMV) in enclosure populations of house mice (Mus domesticus). Epidemiology and Infection, 2005, 133, 701-710.	1.0	25
74	Integrated management to reduce rodent damage to lowland rice crops in Indonesia. Agriculture, Ecosystems and Environment, 2005, 107, 75-82.	2.5	75
75	Kin interactions and changing social structure during a population outbreak of feral house mice. Molecular Ecology, 2005, 14, 2803-2814.	2.0	28
76	One hundred years of eruptions of house mice in Australia - a natural biological curio. Biological Journal of the Linnean Society, 2005, 84, 617-627.	0.7	500
77	Population dynamics of Rattus argentiventer, Rattus losea, and Rattus rattus inhabiting a mixed-farming system in the Red River Delta, Vietnam. Population Ecology, 2005, 47, 247-256.	0.7	21
78	Can outbreaks of house mice in south-eastern Australia be predicted by weather models?. Wildlife Research, 2004, 31, 465.	0.7	34
79	Ecologically-based rodent management: its effectiveness in cropping systems in South-East Asia. Njas - Wageningen Journal of Life Sciences, 2004, 52, 163-171.	7.9	17
80	Towards sustainable management of rodents in organic animal husbandry. Njas - Wageningen Journal of Life Sciences, 2004, 52, 195-205.	7.9	32
81	THE IMPACT OF STERILIZED FEMALES ON ENCLOSED POPULATIONS OF RICEFIELD RATS. Journal of Wildlife Management, 2004, 68, 1130-1137.	0.7	28
82	Spatial distribution of feral house mice during a population eruption. Ecoscience, 2004, 11, 16-22.	0.6	14
83	Can farm-management practices reduce the impact of house mouse populations on crops in an irrigated farming system?. Wildlife Research, 2004, 31, 597.	0.7	31
84	Shifting age structure of house mice during a population outbreak. Wildlife Research, 2004, 31, 613.	0.7	9
85	Is reproduction of the Australian house mouse (Mus domesticus) constrained by food? A large-scale field experiment. Oecologia, 2003, 135, 372-377.	0.9	44
86	Increasing sowing depth to reduce mouse damage to winter crops. Crop Protection, 2003, 22, 653-660.	1.0	48
87	Comparison of different sizes of physical barriers for controlling the impact of the rice field rat, Rattus argentiventer, in rice crops in Indonesia. Crop Protection, 2003, 22, 7-13.	1.0	18
88	Mice, rats, and people: the bio-economics of agricultural rodent pests. Frontiers in Ecology and the Environment, 2003, 1, 367-375.	1.9	241
89	Movements of the ricefield rat, Rattus argentiventer, near a trap-barrier system in rice crops in West Java, Indonesia. International Journal of Pest Management, 2003, 49, 123-129.	0.9	14
90	Abundance Estimators and Truth: Accounting for Individual Heterogeneity in Wild House Mice. Journal of Wildlife Management, 2003, 67, 634.	0.7	38

#	Article	IF	CITATIONS
91	What Affects Bait Uptake by House Mice in Australian Grain Fields?. Journal of Wildlife Management, 2003, 67, 341.	0.7	22
92	Mice, Rats, and People: The Bio-Economics of Agricultural Rodent Pests. Frontiers in Ecology and the Environment, 2003, 1, 367.	1.9	4
93	Retention of the bait marker Rhodamine B in wild house mice. Wildlife Research, 2002, 29, 159.	0.7	28
94	Pre-sowing control of house mice (Mus domesticus) using zinc phosphide: efficacy and potential non-target effects. Wildlife Research, 2002, 29, 27.	0.7	39
95	The impact of murine cytomegalovirus (MCMV) on enclosure populations of house mice (Mus) Tj ETQq1 1 0.784	314 rgBT , 0.7	Oygrlock 10
96	Predation risk and habitat selection of Australian house mice , Mus domesticus , during an incipient plague: desperate behaviour due to food depletion. Oikos, 2002, 99, 284-289.	1.2	64
97	Who eats first? Uptake of pellet bait by target and non-target species. International Biodeterioration and Biodegradation, 2002, 49, 121-124.	1.9	9
98	Habitat use and movements of the rice-field rat, <i>Rattus argentiventer</i> , in West Java, Indonesia. Mammalia, 2001, 65, 151-166.	0.3	19
99	Reproductive changes in fluctuating house mouse populations in southeastern Australia. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1741-1748.	1.2	105
100	The prevalence of viral antibodies during a large population fluctuation of house mice in Australia. Epidemiology and Infection, 2000, 125, 719-727.	1.0	38
101	Ecologically-based rodent management integrating new developments in biotechnology. Proceedings of the Vertebrate Pest Conference, 2000, 19, .	0.1	2
102	MOVEMENTS AND SOCIAL ORGANIZATION OF WILD HOUSE MICE (MUS DOMESTICUS) IN THE WHEATLANDS OF NORTHWESTERN VICTORIA, AUSTRALIA. Journal of Mammalogy, 2000, 81, 59-69.	0.6	70
103	Rate of increase as a function of rainfall for house mouse Mus domesticus populations in a cereal-growing region in southern Australia. Journal of Applied Ecology, 1999, 36, 484-493.	1.9	52
104	Fertility control of wild mouse populations: the effects of hormonal competence and an imposed level of sterility. Wildlife Research, 1999, 26, 579.	0.7	69
105	The <i>Cryptosporidium</i> "Mouse―Genotype Is Conserved across Geographic Areas. Journal of Clinical Microbiology, 1999, 37, 1302-1305.	1.8	69
106	Efficacy of brodifacoum to control house mice, Mus domesticus, in wheat crops in Southern Australia. Crop Protection, 1998, 17, 345-352.	1.0	23
107	An experimental field study to evaluate a trap-barrier system and fumigation for controlling the rice field rat, Rattus argentiventer, in rice crops in West Java. Crop Protection, 1998, 17, 55-64.	1.0	38
108	THE IMPACT OF PREDATOR-INDUCED STRESS ON THE SNOWSHOE HARE CYCLE. Ecological Monographs, 1998, 68, 371-394.	2.4	465

#	Article	IF	CITATIONS
109	The management of house mice in agricultural landscapes using farm management practices: an Australian perspective. Proceedings of the Vertebrate Pest Conference, 1998, 18, .	0.1	10
110	THE IMPACT OF PREDATOR-INDUCED STRESS ON THE SNOWSHOE HARE CYCLE. , 1998, 68, 371.		2
111	THE IMPACT OF PREDATOR-INDUCED STRESS ON THE SNOWSHOE HARE CYCLE. , 1998, 68, 371.		14
112	Evaluation and Cost-effectiveness of Strychnine for Control of Populations of Wild House Mice (Mus) Tj ETQq0 0	0 rgBT /O	verlock 10 Ti
113	A manipulative field experiment to examine the effect of Capillaria hepatica (Nematoda) on wild mouse populations in southern Australia. International Journal for Parasitology, 1996, 26, 383-398.	1.3	25
114	Spatial heterogeneity in wild populations of house mice (Mus domesticus) on the Darling Downs, South eastern Queensland. Wildlife Research, 1996, 23, 23.	0.7	30
115	Can Social Behaviour Influence Food Preference of Wild Mice, Mus Domesticus, in Confined Field Populations?. Australian Journal of Zoology, 1996, 44, 493.	0.6	16
116	Movements of Feral House Mice in Agricultural Landscapes. Australian Journal of Zoology, 1995, 43, 293.	0.6	56
117	Can Changes in Social Behaviour Help to Explain House Mouse Plagues in Australia?. Oikos, 1995, 73, 429.	1.2	27
118	An Experimental Field Study to Examine Whether Capillaria Hepatica (Nematoda) Can Limit House Mouse Populations in Eastern Australia Wildlife Research, 1995, 22, 31.	0.7	28
119	Polyarthritis in wild mice (<i>Mus musculus</i>) caused by <i>Streptobacillus moniliformis</i> . Australian Veterinary Journal, 1994, 71, 143-145.	0.5	20
120	Six reasons why feral house mouse populations might have low recapture rates Wildlife Research, 1994, 21, 559.	0.7	32
121	Population Declines in the Snowshoe Hare and the Role of Stress. General and Comparative Endocrinology, 1993, 91, 126-143.	0.8	111
122	Molecular and biological characterization of new strains of murine cytomegalovirus isolated from wild mice. Archives of Virology, 1993, 132, 209-220.	0.9	65
123	Indexes of Condition for Small Mammals. Australian Journal of Zoology, 1993, 41, 317.	0.6	150
124	A SEROLOGIC SURVEY FOR VIRUSES AND MYCOPLASMA PULMONIS AMONG WILD HOUSE MICE (MUS) TJ ETQO	9.0 0 rgB	Г/Qyerlock 1

125	Prevalence of viral antibodies and helminths in field populations of house mice (Mus domesticus) in southeastern Australia. Epidemiology and Infection, 1993, 110, 399-417.	1.0	51
126	Diet of the House Mouse, Mus domesticus, in the Mallee Wheatlands of North-Western Victoria. Wildlife Research, 1991, 18, 1.	0.7	57

#	Article	IF	CITATIONS
127	The geographic distribution and host range of Capillaria hepatica (Bancroft) (Nematoda) in Australia. International Journal for Parasitology, 1991, 21, 945-957.	1.3	24
128	Evaluation of Bromadiolone Against House Mouse (Mus Domesticus) Populations in Irrigated Soybean Crops. li. Economics Wildlife Research, 1991, 18, 275.	0.7	16
129	Evaluation of Bromadiolone Against House Mouse (Mus Domesticus) Populations in Irrigated Soybean Crops. I. Efficacy of Control Wildlife Research, 1991, 18, 265.	0.7	27
130	Can the nematode <i>Capillaria hepatica</i> regulate abundance in wild house mice? Results of enclosure experiments in southeastern Australia. Parasitology, 1991, 103, 439-449.	0.7	25
131	Structure and biology of house mouse populations that plague irregularly: an evolutionary perspective. Biological Journal of the Linnean Society, 1990, 41, 285-300.	0.7	84
132	The potential of Capillaria hepatica to control mouse plagues. Parasitology Today, 1990, 6, 190-193.	3.1	23
133	Models to assess the potential of <i>Capillaria hepatica</i> to control population outbreaks of house mice. Parasitology, 1989, 98, 425-437.	0.7	36
134	High frequency ofH-2E 0 alleles among wild mice. Immunogenetics, 1989, 30, 222-225.	1.2	10
135	Population dynamics of an outbreak of house mice (Mus domesticus) in the mallee wheatlands of Australia-hypothesis of plague formation. Journal of Zoology, 1989, 219, 495-515.	0.8	119
136	The PICA Strategy for the prevention of losses caused by plagues of Mus domesticus in rural Australia. EPPO Bulletin, 1988, 18, 237-248.	0.6	16
137	Experimental Embryonation and Survival of Eggs of Capillaria-Hepatica (Nematoda) Under Mouse Burrow Conditions in Cereal-Growing Soils. Australian Journal of Zoology, 1987, 35, 337.	0.6	12
138	A comparison of the effectiveness of pitfall and longworth live-trapping techniques in population studies of house mice. Acta Theriologica, 1987, 32, 245-259.	1.1	10
139	Studies on the Life-Cycle, Infectivity and Clinical Effects of Capillaria-Hepatica (Bancroft) (Nematoda) in Mice, Mus-Musculus. Australian Journal of Zoology, 1986, 34, 663.	0.6	35
140	The Effects of Capillaria-Hepatica (Nematoda) on Natality and Survival to Weaning in Balb/C Mice. Australian Journal of Zoology, 1986, 34, 677.	0.6	29
141	Population Dynamics of Mus Musculus and Its Parasites in Mallee Wheatlands in Victoria During and After a Drought Wildlife Research, 1985, 12, 437.	0.7	29
142	A Demographic and Gentic Study of House Mice, Mus musulus, Colonizing Pasture Haystacks on a Cereal Farm. Australian Journal of Zoology, 1985, 33, 437.	0.6	11
143	The effect of social organization on reproductive success and gene flow in colonies of wild house mice, Mus musculus. Behavioral Ecology and Sociobiology, 1983, 12, 49-56.	0.6	86
144	The Social and Genetic Structure of a Natural Colony of House Mice, Mus musculus, at Healesville WildlifeSanctuary. Australian Journal of Zoology, 1983, 31, 155.	0.6	69

#	Article	IF	CITATIONS
145	A genetic study of male social aggression in wild and laboratory mice. Behavior Genetics, 1982, 12, 435-448.	1.4	15
146	Ecologically-based management of pest rodents in rice-based agro-ecosystems in southeast Asia. Proceedings of the Vertebrate Pest Conference, 0, 20, .	0.1	3