Zhaoping Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/3426425/zhaoping-liu-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

7,780 82 204 47 h-index g-index citations papers 6.49 8.4 9,434 220 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
204	Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. <i>Advanced Energy Materials</i> , 2015 , 5, 1400930	21.8	680
203	Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3353		420
202	Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. <i>Nature Communications</i> , 2016 , 7, 12108	17.4	379
201	A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. <i>Chemical Communications</i> , 2010 , 46, 2611-3	5.8	216
200	3D Porous MXene (TiC)/Reduced Graphene Oxide Hybrid Films for Advanced Lithium Storage. <i>ACS Applied Materials & Discourse (Supplied Materials & Discours)</i> (2018), 10, 3634-3643	9.5	185
199	A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7724		182
198	Large-Sized Few-Layer Graphene Enables an Ultrafast and Long-Life Aluminum-Ion Battery. <i>Advanced Energy Materials</i> , 2017 , 7, 1700034	21.8	160
197	Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8086		158
196	A Comprehensive Understanding of LithiumBulfur Battery Technology. <i>Advanced Functional Materials</i> , 2019 , 29, 1901730	15.6	156
195	Morphology-Dependent Electrochemical Performance of Zinc Hexacyanoferrate Cathode for Zinc-Ion Battery. <i>Scientific Reports</i> , 2015 , 5, 18263	4.9	156
194	Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size. <i>ACS Applied Materials & Description</i> (2016), 8, 4661-75	9.5	152
193	Sulfur/Carbon Nanotube Composite Film as a Flexible Cathode for LithiumBulfur Batteries. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 21112-21119	3.8	121
192	Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide. <i>Polymer-Plastics Technology and Engineering</i> , 2012 , 51, 251-256		116
191	Microscale Lithium Metal Stored inside Cellular Graphene Scaffold toward Advanced Metallic Lithium Anodes. <i>Advanced Energy Materials</i> , 2018 , 8, 1703152	21.8	113
190	Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10595-10626	13	109
189	A Chronicle Review of Nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes. <i>Small Methods</i> , 2020 , 4, 2000218	12.8	99
188	Enhancing the pyridinic N content of Nitrogen-doped graphene and improving its catalytic activity for oxygen reduction reaction. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 28298-28308	6.7	91

187	Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. <i>Energy Storage Materials</i> , 2019 , 16, 220-227	19.4	91	
186	Hybrid Organic-Inorganic Thermoelectric Materials and Devices. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15206-15226	16.4	87	
185	Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21144		86	
184	Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 9185-93	9.5	83	
183	New-concept batteries based on aqueous Li+/Na+ mixed-ion electrolytes. <i>Scientific Reports</i> , 2013 , 3, 1946	4.9	83	
182	Self-Templating Construction of 3D Hierarchical Macro-/Mesoporous Silicon from 0D Silica Nanoparticles. <i>ACS Nano</i> , 2017 , 11, 889-899	16.7	82	
181	Understanding and Controlling Anionic Electrochemical Activity in High-Capacity Oxides for Next Generation Li-Ion Batteries. <i>Chemistry of Materials</i> , 2017 , 29, 908-915	9.6	81	
180	Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2D.4LiNixMnyCo1QO2 cathode materials for lithium-ion batteries. <i>Journal of Power Sources</i> , 2012 , 218, 128-133	8.9	80	
179	Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries. <i>Nano Energy</i> , 2017 , 39, 546-	553.1	79	
178	A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 278, 190-196	8.9	77	
177	Polyimide matrix-enhanced cross-linked gel separator with three-dimensional heat-resistance skeleton for high-safety and high-power lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 9134	13	75	
176	Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics. <i>Nature Communications</i> , 2016 , 7, 11982	17.4	73	
175	Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO2F2) additive. <i>RSC Advances</i> , 2017 , 7, 26052-26059	3.7	69	
174	Synthesis and electrochemical properties of layered lithium transition metal oxides. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2544-2549		69	
173	(La1\darksrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries. <i>Journal of Power Sources</i> , 2017 , 342, 192-201	8.9	64	
172	Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. <i>Scientific Reports</i> , 2015 , 5, 8255	4.9	63	
171	Solution-Based Evolution and Enhanced Methanol Oxidation Activity of Monodisperse Platinum Copper Nanocubes. <i>Angewandte Chemie</i> , 2009 , 121, 4281-4285	3.6	63	
170	Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material. <i>Journal of Power Sources</i> , 2014 , 268, 683-691	8.9	62	

169	Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries. <i>ACS Applied Materials & District Materi</i>	-8750	60
168	Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation. <i>Scientific Reports</i> , 2016 , 6, 33185	4.9	58
167	Silicon/carbon lithium-ion battery anode with 3D hierarchical macro-/mesoporous silicon network: Self-templating synthesis via magnesiothermic reduction of silica/carbon composite. <i>Journal of Power Sources</i> , 2019 , 412, 93-104	8.9	57
166	A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2, Li2MnO3, LiNi0.5Co0.2Mn0.3O2 and LiCoO2 for the initial charge discharge. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11930-11939	13	52
165	Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. <i>Energy Storage Materials</i> , 2018 , 15, 266-273	19.4	52
164	Aqueous batteries based on mixed monovalence metal ions: a new battery family. <i>ChemSusChem</i> , 2014 , 7, 2295-302	8.3	52
163	Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16740-16747	13	51
162	Orientation Control of Graphene Flakes by Magnetic Field: Broad Device Applications of Macroscopically Aligned Graphene. <i>Advanced Materials</i> , 2017 , 29, 1604453	24	50
161	Designed synthesis of LiMn2O4 microspheres with adjustable hollow structures for lithium-ion battery applications. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 837-842	13	50
160	Methylsulfonylmethane-Based Deep Eutectic Solvent as a New Type of Green Electrolyte for a High-Energy-Density Aqueous Lithium-Ion Battery. <i>ACS Energy Letters</i> , 2019 , 4, 1419-1426	20.1	49
159	Si/Ag/C Nanohybrids with in Situ Incorporation of Super-Small Silver Nanoparticles: Tiny Amount, Huge Impact. <i>ACS Nano</i> , 2018 , 12, 861-875	16.7	49
158	La0.8Sr0.2Co1-xMnxO3 perovskites as efficient bi-functional cathode catalysts for rechargeable zinc-air batteries. <i>Electrochimica Acta</i> , 2017 , 254, 14-24	6.7	48
157	Composition-Dependent Electrocatalytic Activity of Pt-Cu Nanocube Catalysts for Formic Acid Oxidation. <i>Angewandte Chemie</i> , 2010 , 122, 1304-1307	3.6	46
156	Oxygen reduction reaction catalysts of manganese oxide decorated by silver nanoparticles for aluminum-air batteries. <i>Electrochimica Acta</i> , 2016 , 214, 49-55	6.7	46
155	Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials. <i>Nanoscale</i> , 2017 , 9, 3547-3554	7.7	45
154	Synthetic methodologies for carbon nanomaterials. <i>Advanced Materials</i> , 2010 , 22, 1963-6	24	45
153	Localized concentration reversal of lithium during intercalation into nanoparticles. <i>Science Advances</i> , 2018 , 4, eaao2608	14.3	44
152	Performances of an AlD.15 BiD.15 PbD.035 Ga alloy as an anode for AlEir batteries in neutral and alkaline electrolytes. <i>RSC Advances</i> , 2017 , 7, 25838-25847	3.7	43

Identifying the chemical and structural irreversibility in LiNi0.8Co0.15Al0.05O2 h model compound for classical layered intercalation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 4189-4198	13	41
Two-Dimensional Porous Micro/Nano Metal Oxides Templated by Graphene Oxide. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt Materials & Discourt & Dis</i>	9.5	41
Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries. <i>ACS Applied Materials & Density Lithium-Ion Batteries</i> . <i>ACS Applied Materials & Density Lithium-Ion Batteries</i> .	38 <u>6</u> 6	39
Enhanced high voltage cyclability of LiCoO2 cathode by adopting poly[bis-(ethoxyethoxyethoxy)phosphazene] with flame-retardant property as an electrolyte additive for lithium-ion batteries. <i>Applied Surface Science</i> , 2017 , 403, 260-266	6.7	35
Electrocatalytic activity of silver decorated ceria microspheres for the oxygen reduction reaction and their application in aluminium-air batteries. <i>Chemical Communications</i> , 2017 , 53, 7921-7924	5.8	35
Scalable in Situ Synthesis of LiTiO/Carbon Nanohybrid with Supersmall LiTiO Nanoparticles Homogeneously Embedded in Carbon Matrix. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2018 , 10, 2591-26	62 5	35
One-Pot Synthesis of Co O /Ag Nanoparticles Supported on N-Doped Graphene as Efficient Bifunctional Oxygen Catalysts for Flexible Rechargeable Zinc-Air Batteries. <i>Chemistry - A European</i> <i>Journal</i> , 2018 , 24, 14816-14823	4.8	33
Green facile scalable synthesis of titania/carbon nanocomposites: new use of old dental resins. <i>ACS Applied Materials & Applied & Applied Materials & Applied Materials & Applied & Appli</i>	9.5	33
Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core-Shell Materials by Adjusting the Interface for Metal-Air Batteries. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 25870-25881	9.5	32
Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase. <i>ACS Omega</i> , 2017 , 2, 8741-8750	3.9	32
Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates. <i>ACS Applied Materials & Dental Methacrylates</i> , 2016, 8, 13982-92	9.5	32
Cerium ion intercalated MnO2 nanospheres with high catalytic activity toward oxygen reduction reaction for aluminum-air batteries. <i>Electrochimica Acta</i> , 2018 , 263, 544-554	6.7	31
Synthesis and electrochemical performance of micro-sized Li-rich layered cathode material for Lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 211, 507-514	6.7	31
Promoting effects of Ce0.75Zr0.25O2 on the La0.7Sr0.3MnO3 electrocatalyst for the oxygen reduction reaction in metallir batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 6411-6415	13	30
Eliminating voltage decay of lithium-rich li1.14 mn0.54 ni0.14 co0.14 o2 cathodes by controlling the electrochemical process. <i>Chemistry - A European Journal</i> , 2015 , 21, 7503-10	4.8	30
New perspective to understand the effect of electrochemical prelithiation behaviors on silicon monoxide <i>RSC Advances</i> , 2018 , 8, 14473-14478	3.7	30
A new family of Mn-based perovskite (La1-xYxMnO3) with improved oxygen electrocatalytic activity for metal-air batteries. <i>Energy</i> , 2018 , 154, 561-570	7.9	30
Facile synthesis of ternary spinel CoMnNi nanorods as efficient bi-functional oxygen catalysts for rechargeable zinc-air batteries. <i>Journal of Power Sources</i> , 2019 , 435, 226761	8.9	30
	Two-Dimensional Porous Micro/Nano Metal Oxides Templated by Graphene Oxide. ACS Applied Materials & Amp: Interfaces, 2015, 7, 11984-90 Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries. ACS Applied Materials & Amp: Interfaces, 2017, 9, 3661-2 Enhanced high voltage cyclability of LiCoO2 cathode by adopting polylbis-(ethoxyethoxyethoxye)hosphazene] with flame-retardant property as an electrolyte additive for lithium-ion batteries. Applied Surface Science, 2017, 403, 260-266 Electrocatalytic activity of silver decorated ceria microspheres for the oxygen reduction reaction and their application in aluminium-air batteries. Chemical Communications, 2017, 53, 7921-7924 Scalable in Situ Synthesis of LITIO/Carbon Nanohybrid with Supersmall LITIO Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS Applied Materials & Efficient Bifunctional Oxygen Catalysts for Flexible Rechargeable Zinc-Air Batteries. Chemistry - A European Journal, 2018, 24, 14816-14823 Green Facile scalable synthesis of titania/carbon nanocomposites: new use of old dental resins. ACS Applied Materials & Bamp; Interfaces, 2014, 6, 18461-8 Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core-Shell Materials by Adjusting the Interface for Metal-Air Batteries. ACS Applied Materials & Amp; Interfaces, 2014, 6, 18461-8 Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core-Shell Materials by Adjusting the Interface for Metal-Air Batteries. ACS Applied Materials & Amp; Interfaces, 2019, 11, 2587-0-25881 Fluorinated Electrolytes for Li-Ion Batteries: The Lithium Difluoro (oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase. ACS Omega, 2017, 2, 8741-8750 Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates. ACS Applied Materials & Amp; Interfaces, 2016, 8, 13982-92 Cerium	Two-Dimensional Porous Micro/Nano Metal Oxides Templated by Graphene Oxide. ACS Applied Materials & Amp; Interfaces, 2015, 7, 11984-90 Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-lon Batteries. ACS Applied Materials & Amp; Interfaces, 2017, 9, 3661-3866 Enhanced high voltage cyclability of LiCoO2 cathode by adopting polybis-(ethoxyethoxyethoxyethoxyphosphazene) with flame-retardant property as an electrolyte additive for lithium-ion batteries. Applied Surface Science, 2017, 403, 260-266 Electrocatalytic activity of silver decorated ceria microspheres for the oxygen reduction reaction and their application in aluminium-air batteries. Chemical Communications, 2017, 53, 7921-7924 Scalable in Situ Synthesis of Co O /Ag Nanoparticles Supported on N-Dopped Graphene as Efficient Bifunctional Oxygen Catalysts for Flexible Rechargeable Zinc-Air Batteries. Chemistry - A European Journal, 2018, 24, 14816-14823 Green facile scalable synthesis of titania/carbon nanocomposites: new use of old dental resins. ACS Applied Materials & Amp; Interfaces, 2014, 6, 18461-8 Enhanced Bifunctional Catalystic Activity of Manganese Oxide/Perovskite Hierarchical Core-Shell Materials by Adjusting the Interface for Metal-Air Batteries. ACS Applied Materials & Damp; Interfaces, 2019, 11, 25870-25881 Fluorinated Electrolytes for Li-lon Batteries: The Lithium Difluoro(oxalato)borate Additive for Stabilizing the Solid Electrolyte Interphase. ACS Omega, 2017, 2, 8741-8750 Silicon Oxycarbide/Carbon Nanohybrids with Tiny Silicon Oxycarbide Particles Embedded in Free Carbon Matrix Based on Photoactive Dental Methacrylates. ACS Applied Materials & Damp; Interfaces, 2016, 8, 1382-92 Cerium ion intercalated MnO2 nanospheres with high catalytic activity toward oxygen reduction reaction in metalBir batteries. Leurnal of Materials Chemistry 4, 2017, 5, 6411-6415 Synthesis and electrochemical performance of micro-sized Li-rich layered cathode material for Lithium-io

133	5 V-Class Electrolytes Based on Fluorinated Solvents for Li-Ion Batteries with Excellent Cyclability. ChemElectroChem, 2015, 2, 1707-1712 4-3	,	30
132	Nitrogen-Doped Graphene Nanoscroll Foam with High Diffusion Rate and Binding Affinity for Removal of Organic Pollutants. <i>Small</i> , 2017 , 13, 1603779		29
131	Facile Scalable Synthesis of TiO2/Carbon Nanohybrids with Ultrasmall TiO2 Nanoparticles Homogeneously Embedded in Carbon Matrix. <i>ACS Applied Materials & Distriction of Sciences</i> , 2015, 7, 24247-55 9-5	,	29
130	Scalable synthesis of Si nanowires interconnected SiOx anode for high performance lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 783, 128-135	7	29
129	Highly Reversible Li Plating Confined in Three-Dimensional Interconnected Microchannels toward High-Rate and Stable Metallic Lithium Anodes. <i>ACS Applied Materials & District Applied Materia</i>	195	29
128	Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency. <i>Nano-Micro Letters</i> , 2021 , 13, 44	.5	27
127	Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and long-life anode material for Li-ion batteries. <i>International Journal of Energy Research</i> , 2019 , 43, 4995-5003	;	26
126	Oxidation Decomposition Mechanism of Fluoroethylene Carbonate-Based Electrolytes for High-Voltage Lithium Ion Batteries: A DFT Calculation and Experimental Study. <i>ChemistrySelect</i> , 1.8 2017 , 2, 7353-7361	;	26
125	Silver nanoparticles supported on a nitrogen-doped graphene aerogel composite catalyst for an oxygen reduction reaction in aluminum air batteries. <i>RSC Advances</i> , 2016 , 6, 99179-99183	,	26
124	Competitive Solvation-Induced Concurrent Protection on the Anode and Cathode toward a 400 Wh kgll Lithium Metal Battery. <i>ACS Energy Letters</i> , 2021 , 6, 115-123	.1	25
123	La0.7(Sr0.3-xPdx)MnO3 as a highly efficient electrocatalyst for oxygen reduction reaction in aluminum air battery. <i>Electrochimica Acta</i> , 2017 , 230, 418-427	,	24
122	La1NAgxMnO3 electrocatalyst with high catalytic activity for oxygen reduction reaction in aluminium air batteries. <i>RSC Advances</i> , 2017 , 7, 5214-5221		24
121	A bifunctional hierarchical porous carbon network integrated with an in situ formed ultrathin graphene shell for stable lithium Bulfur batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13674-13682 13		24
120	Hydrothermal self-assembly of graphene foams with controllable pore size. RSC Advances, 2016, 6, 20843.7	2084	4 <u>9</u> 4
119	Oriented Arrangement: The Origin of Versatility for Porous Graphene Materials. <i>Small</i> , 2017 , 13, 170123 1 1		24
118	Graphene network nested Cu foam for reducing size of lithium metal towards stable metallic lithium anode. <i>Energy Storage Materials</i> , 2019 , 21, 107-114	·4	24
117	One-pot synthesis of La 0.7 Sr 0.3 MnO 3 supported on flower-like CeO 2 as electrocatalyst for oxygen reduction reaction in aluminum-air batteries. <i>Journal of Power Sources</i> , 2017 , 358, 50-60)	23
116	Metastability and Reversibility of Anionic Redox-Based Cathode for High-Energy Rechargeable Batteries. <i>Cell Reports Physical Science</i> , 2020 , 1, 100028-100028		23

(2016-2016)

115	Ordered self-assembly of amphipathic graphene nanosheets into three-dimensional layered architectures. <i>Nanoscale</i> , 2016 , 8, 197-203	7.7	23
114	Effect of alumina on the curvature, YoungS modulus, thermal expansion coefficient and residual stress of planar solid oxide fuel cells. <i>Journal of Power Sources</i> , 2011 , 196, 7639-7644	8.9	23
113	TiO2(B) INT graphene ternary composite anode material for lithium ion batteries. <i>RSC Advances</i> , 2015 , 5, 22449-22454	3.7	20
112	Template-directed fabrication of porous gas diffusion layer for magnesium air batteries. <i>Journal of Power Sources</i> , 2015 , 297, 202-207	8.9	20
111	A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries. <i>Journal of Power Sources</i> , 2018 , 400, 449-456	8.9	20
110	Polyethylene Glycol-Na Interface of Vanadium Hexacyanoferrate Cathode for Highly Stable Rechargeable Aqueous Sodium-Ion Battery. <i>ACS Applied Materials & District Action Services</i> , 2019, 11, 28762-287	788	20
109	Planar Alignment of Graphene Sheets by a Rotating Magnetic Field for Full Exploitation of Graphene as a 2D Material. <i>Advanced Functional Materials</i> , 2018 , 28, 1805255	15.6	20
108	Structure-preserved 3D porous silicon/reduced graphene oxide materials as anodes for Li-ion batteries. <i>RSC Advances</i> , 2017 , 7, 24305-24311	3.7	19
107	Controlling siloxene oxidization to tailor SiOx anodes for high performance lithium ion batteries. Journal of Power Sources, 2019 , 432, 65-72	8.9	19
106	Attapulgite nanofibers and graphene oxide composite membrane for high-performance molecular separation. <i>Journal of Colloid and Interface Science</i> , 2019 , 545, 276-281	9.3	19
105	Ultrasmall Co3O4 Nanoparticles Confined in P, N-Doped Carbon Matrices for High-Performance Supercapacitors. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 9225-9232	3.8	19
104	Hierarchical porous MnO/graphene composite aerogel as high-performance anode material for lithium ion batteries. <i>RSC Advances</i> , 2017 , 7, 15857-15863	3.7	18
103	Physicochemical and Electrochemical Properties of 1,1,2,2-Tetrafluoroethyl-2,2,3,3-Tetrafluoropropyl Ether as a Co-Solvent for High-Voltage Lithium-Ion Electrolytes. <i>ChemElectroChem</i> , 2019 , 6, 3747-3755	4.3	18
102	Dental Resin Monomer Enables Unique NbO2/Carbon Lithium-Ion Battery Negative Electrode with Exceptional Performance. <i>Advanced Functional Materials</i> , 2019 , 29, 1904961	15.6	18
101	Graphene wrapped silicon suboxides anodes with suppressed Li-uptake behavior enabled superior cycling stability. <i>Energy Storage Materials</i> , 2021 , 35, 317-326	19.4	18
100	Double-helix-superstructure aqueous binder to boost excellent electrochemical performance in Li-rich layered oxide cathode. <i>Journal of Power Sources</i> , 2019 , 420, 29-37	8.9	17
99	Revisiting the open-framework zinc hexacyanoferrate: The role of ternary electrolyte and sodium-ion intercalation mechanism. <i>Journal of Power Sources</i> , 2018 , 380, 135-141	8.9	17
98	A compressible and hierarchical porous graphene/Co composite aerogel for lithium-ion batteries with high gravimetric/volumetric capacity. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6021-6028	13	17

97	Understanding the Discrepancy of Defect Kinetics on Anionic Redox in Lithium-Rich Cathode Oxides. <i>ACS Applied Materials & Discrepancy (Interfaces)</i> , 11, 14023-14034	9.5	16
96	Vapor-assisted synthesis of hierarchical porous graphitic carbon materials towards energy storage devices. <i>Journal of Power Sources</i> , 2019 , 425, 10-16	8.9	16
95	From IO IC to 150 IC: a lithium secondary battery with a wide temperature window obtained via manipulated competitive decomposition in electrolyte solution. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9307-9318	13	16
94	Vacuum-Free, All-Solution, and All-Air Processed Organic Photovoltaics with over 11% Efficiency and Promoted Stability Using Layer-by-Layer Codoped Polymeric Electrodes. <i>Solar Rrl</i> , 2020 , 4, 1900543	7.1	15
93	Graphene/Sulfur Composites with a Foam-Like Porous Architecture and Controllable Pore Size for High Performance LithiumBulfur Batteries. <i>ChemNanoMat</i> , 2016 , 2, 952-958	3.5	15
92	Stabilization effects of Al doping for enhanced cycling performances of Li-rich layered oxides. <i>Ceramics International</i> , 2017 , 43, 13845-13852	5.1	15
91	Slurry-like hybrid electrolyte with high lithium-ion transference number for dendrite-free lithium metal anode. <i>Journal of Energy Chemistry</i> , 2020 , 48, 375-382	12	14
90	Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage. <i>Electrochimica Acta</i> , 2018 , 260, 430-438	6.7	14
89	Regulating capillary pressure to achieve ultralow areal mass loading metallic lithium anodes. <i>Energy Storage Materials</i> , 2019 , 23, 693-700	19.4	14
88	Graphene Modified Polyaniline-Hydrogel Based Stretchable Supercapacitor with High Capacitance and Excellent Stretching Stability. <i>ChemSusChem</i> , 2021 , 14, 938-945	8.3	14
87	Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries. <i>RSC Advances</i> , 2016 , 6, 12107-12113	3.7	13
86	Graphene/Sulfur/Carbon Nanocomposite for High Performance Lithium-Sulfur Batteries. <i>Nanomaterials</i> , 2015 , 5, 1481-1492	5.4	13
85	Si/C nanocomposite anode materials by freeze-drying with enhanced electrochemical performance in lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 2733-2738	2.6	13
84	Fabrication of porous anode-support for planar solid oxide fuel cell using fish oil as a pore former. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 8533-8541	6.7	13
83	Facile fabrication of nanoporous graphene powder for high-rate lithiumBulfur batteries. <i>RSC Advances</i> , 2017 , 7, 5177-5182	3.7	12
82	Composite membrane with ultra-thin ion exchangeable functional layer: a new separator choice for manganese-based cathode material in lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7006-7013	13	12
81	Improving catalytic activity of layered lithium transition metal oxides for oxygen electrode in metal-air batteries. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 1846-1856	6.7	12
80	Flexible asymmetric microsupercapacitor with high energy density based on all-graphene electrode system. <i>Journal of Materials Science</i> , 2020 , 55, 309-318	4.3	12

(2020-2021)

79	All annealing-free solution-processed highly flexible organic solar cells. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 5425-5433	13	12
78	Solvent evaporation induced self-assembly of graphene foam for thermally conductive polymers. <i>RSC Advances</i> , 2017 , 7, 15469-15474	3.7	11
77	MnO/Metal/Carbon Nanohybrid Lithium-Ion Battery Anode With Enhanced Electrochemical Performance: Universal Facile Scalable Synthesis and Fundamental Understanding. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900335	4.6	11
76	Ultrafast Heterogeneous Nucleation Enables a Hierarchical Surface Configuration of Lithium-Rich Layered Oxide Cathode Material for Enhanced Electrochemical Performances. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1701465	4.6	11
75	Role of Nickel Nanoparticles in High-Performance TiO /Ni/Carbon Nanohybrid Lithium/Sodium-Ion Battery Anodes. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 1557-1569	4.5	10
74	Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 6267-6274	13	10
73	Microporous Binder for the Silicon-Based Lithium-Ion Battery Anode with Exceptional Rate Capability and Improved Cyclic Performance. <i>Langmuir</i> , 2020 , 36, 2003-2011	4	10
72	All graphene electrode for high-performance asymmetric supercapacitor. <i>International Journal of Energy Research</i> , 2020 , 44, 1244-1255	4.5	10
71	Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with a Tunable Pore Size and Wall Thickness. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 43785-43797	9.5	10
70	Anode supported planar solid oxide fuel cells with the large size of 30km 180km via tape-casting and co-sintering technique. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 1871-1876	6.7	10
69	Study on the fracture behavior of the planar-type solid oxide fuel cells. <i>Journal of Alloys and Compounds</i> , 2019 , 782, 355-362	5.7	10
68	A Nano-Architectured Metal-Oxide/Perovskite Hybrid Material as Electrocatalyst for the Oxygen Reduction Reaction in AluminumAir Batteries. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6824-6833	5.6	10
67	Reactivating Li O with Nano-Sn to Achieve Ultrahigh Initial Coulombic Efficiency SiO Anodes for Li-Ion Batteries. <i>ChemSusChem</i> , 2019 , 12, 3377-3382	8.3	9
66	Lithium Bis(fluorosulfony)imide-Lithium Hexafluorophosphate Binary-Salt Electrolytes for Lithium-Ion Batteries: Aluminum Corrosion Behaviors and Electrochemical Properties. <i>ChemistrySelect</i> , 2018 , 3, 1954-1960	1.8	9
65	Hybrid electrolytes incorporated with dandelion-like silane Al2O3 nanoparticles for high-safety high-voltage lithium ion batteries. <i>Journal of Power Sources</i> , 2018 , 391, 113-119	8.9	9
64	Synergistic Effect of Lewis Base Polymers and Graphene in Enhancing the Efficiency of Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2021 , 4, 3928-3936	6.1	9
63	Effect of phase transformation of zirconia on the fracture behavior of electrolyte-supported solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 12118-12126	6.7	7
62	Photoacoustic identification of laser-induced microbubbles as light scattering centers for optical limiting in a liquid suspension of graphene nanosheets. <i>Nanoscale</i> , 2020 , 12, 7109-7115	7.7	7

61	Template-free synthesis of titania architectures with controlled morphology evolution. <i>Journal of Materials Science</i> , 2016 , 51, 3941-3956	4.3	7
60	Revealing Anion Adsorption Mechanism for Coating Layer on Separator toward Practical Li Metal Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 13, 23584-23591	9.5	7
59	Organosilicon-Based Functional Electrolytes for High-Performance Lithium Batteries. <i>Advanced Energy Materials</i> , 2021 , 11, 2101057	21.8	7
58	Hybride organisch-anorganische thermoelektrische Materialien und Baueinheiten. <i>Angewandte Chemie</i> , 2019 , 131, 15348-15370	3.6	7
57	Graphene Flakes: Orientation Control of Graphene Flakes by Magnetic Field: Broad Device Applications of Macroscopically Aligned Graphene (Adv. Mater. 1/2017). <i>Advanced Materials</i> , 2017 , 29,	24	6
56	Porous Graphene-Like Materials Prepared from Hollow Carbonaceous Microspheres for Supercapacitors. <i>ChemNanoMat</i> , 2015 , 1, 422-429	3.5	6
55	Morphology-controlled MoS by low-temperature atomic layer deposition. <i>Nanoscale</i> , 2020 , 12, 20404-20	0 /1 .†2	6
54	Sufficient Oxygen Redox Activation against Voltage Decay in Li-Rich Layered Oxide Cathode Materials 2021 , 3, 433-441		6
53	Sulfur is a New High-Performance Additive toward High-Voltage LiNiCoMnO Cathode: Tiny Amount, Huge Impact. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 18648-18657	9.5	6
52	High Pressure Effect on Structural and Electrochemical Properties of Anionic Redox-Based Lithium Transition Metal Oxides. <i>Matter</i> , 2021 , 4, 164-181	12.7	6
51	3D Graphene Oxide Micropatterns Achieved by Roller-Assisted Microcontact Printing Induced Interface Integral Peel and Transfer. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600867	4.6	5
50	Poly(siloxane imide) Binder for Silicon-Based Lithium-Ion Battery Anodes via Rigidness/Softness Coupling. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 2674-2680	4.5	5
49	Na Superionic Conductor-Type TiNb(PO) Anode with High Energy Density and Long Cycle Life Enables Aqueous Alkaline-Ion Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 39757-39764	9.5	5
48	Composite cathodes for electrolyte-supported solid oxide fuel cells with thin YbSZ electrolyte. Journal of Alloys and Compounds, 2017 , 695, 583-589	5.7	5
47	Direct probing of density of states of reduced graphene oxides in a wide voltage range by tunneling junction. <i>Applied Physics Letters</i> , 2012 , 101, 183110	3.4	5
46	Stable Electrode/Electrolyte Interface for High-Voltage NCM 523 Cathode Constructed by Synergistic Positive and Passive Approaches. <i>ACS Applied Materials & Description</i> (2011), 13, 57107-57	7 19157	5
45	Unveiling the Effect of Surface and Bulk Structure on Electrochemical Properties of Disproportionated SiOx Anodes. <i>ChemNanoMat</i> , 2020 , 6, 1127-1135	3.5	5
44	Confining Al-Li alloys between pre-constructed conductive buffers for advanced aluminum anodes. <i>Chemical Communications</i> , 2019 , 55, 2352-2355	5.8	4

43	Porous titania/carbon hybrid microspheres templated by in situ formed polystyrene colloids. Journal of Colloid and Interface Science, 2016 , 469, 242-256	9.3	4	
42	Electrostatic Self-Assembly of the Composite La0.7Sr0.3MnO3@Ce0.75Zr0.25O2 as Electrocatalyst for the Oxygen Reduction Reaction in AluminumAir Batteries. <i>Energy Technology</i> , 2017 , 5, 2226-2233	3.5	4	
41	Nano-channel-based physical and chemical synergic regulation for dendrite-free lithium plating. <i>Nano Research</i> , 2021 , 14, 3585-3597	10	4	
40	Direct Regeneration of Spent Lithium Iron Phosphate via a Low-Temperature Molten Salt Process Coupled with a Reductive Environment. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 3831	-3839	4	
39	Synergy effects on blending Li-rich and classical layered cathode oxides with improved electrochemical performance. <i>Ceramics International</i> , 2019 , 45, 15097-15107	5.1	3	
38	Graphene Nanoscrolls with Confined Silicon Nanoparticles as a Durable Anode for Lithium-Ion Batteries. <i>ChemNanoMat</i> , 2019 , 5, 748-753	3.5	3	
37	Facile fabrication of stable and high-rate Si/NiSix/CNTs Li-ion anodes with a buffering interface. <i>RSC Advances</i> , 2016 , 6, 78559-78563	3.7	3	
36	Adopting combined strategies to make state of charge (SOC) estimation for practical use. <i>Journal of Renewable and Sustainable Energy</i> , 2018 , 10, 034102	2.5	3	
35	CO2 treatment enables non-hazardous, reliable, and efficacious recovery of spent Li(Ni0.5Co0.2Mn0.3)O2 cathodes. <i>Green Chemistry</i> , 2022 , 24, 779-789	10	3	
34	In Situ Incorporation of Super-Small Metallic High Capacity Nanoparticles and Mesoporous Structures for High-Performance TiO2/SnO2/Sn/Carbon Nanohybrid Lithium-Ion Battery Anodes. <i>Energy Technology</i> , 2020 , 8, 2000034	3.5	3	
33	SnO2/Sn/Carbon nanohybrid lithium-ion battery anode with high reversible capacity and excellent cyclic stability. <i>Nano Select</i> , 2021 , 2, 642-653	3.1	3	
32	Fabrication of submillimeter-sized single-crystalline graphene arrays by a commercial printing-assisted CVD method. <i>RSC Advances</i> , 2017 , 7, 17800-17805	3.7	2	
31	Practically Relevant Research on Silicon-Based Lithium-Ion Battery Anodes 2019 , 261-305		2	
30	Epoxy Resin Enables Facile Scalable Synthesis of CuO/C Nanohybrid Lithium-Ion Battery Anode with Enhanced Electrochemical Performance. <i>ChemistrySelect</i> , 2020 , 5, 5479-5487	1.8	2	
29	Iron Hexcyanoferrate Nanocubes as Low-Strain Cathode Materials for Aqueous Li/Na Mixed-Ion Batteries. <i>ACS Applied Nano Materials</i> , 2020 , 3, 1318-1323	5.6	2	
28	Patterning of graphene microscale structures using electrohydrodynamic atomisation deposition of photoresist moulds. <i>Micro and Nano Letters</i> , 2014 , 9, 136-140	0.9	2	
27	Understanding the steric effect of graphene in graphene wrapped silicon suboxides anodes for Li-ion batteries. <i>Journal of Power Sources</i> , 2022 , 522, 231007	8.9	2	
26	Controls of oxygen-partial pressure to accelerate the electrochemical activation in Co-free Li-rich layered oxide cathodes. <i>Journal of Power Sources</i> , 2022 , 523, 231022	8.9	2	

25	Large graphene-induced shift of surface-plasmon resonances of gold films: Effective-medium theory for atomically thin materials. <i>Physical Review Research</i> , 2020 , 2,	3.9	2
24	Impact of CO2 activation on the structure, composition, and performance of Sb/C nanohybrid lithium/sodium-ion battery anodes. <i>Nanoscale Advances</i> , 2021 , 3, 1942-1953	5.1	2
23	Ultra-smooth and robust graphene-based hybrid anode for high-performance flexible organic light-emitting diodes. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 2106-2114	7.1	2
22	A facile method of selective dissolution for preparation of Co3O4/LaCoO3 as a bifunctional catalyst for Al/ZnBir batteries. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 995-1002	5.8	2
21	Bronze-Phase TiO 2 as Anode Materials in Lithium and Sodium-Ion Batteries. <i>Advanced Functional Materials</i> ,2201675	15.6	2
20	Continuous fast pyrolysis synthesis of TiO2/C nanohybrid lithium-ion battery anode. <i>Nano Select</i> , 2021 , 2, 1770-1778	3.1	1
19	Si/Cu/C Nanohybrid Lithium-Ion Battery Anode with in Situ Incorporation of Nonagglomerated Super-Small Copper Nanoparticles Based on Epoxy Resin. <i>Energy & Description</i> 2021, 35, 6250-6264	4.1	1
18	Conformal Coating of a Carbon Film on 3D Hosts toward Stable Lithium Anodes. <i>ACS Applied Energy Materials</i> , 2021 , 4, 7288-7297	6.1	1
17	Establishment of a reliable transfer process for fabricating chemical vapor deposition-grown graphene films with advanced and repeatable electrical properties <i>RSC Advances</i> , 2018 , 8, 19846-1985	13.7	1
16	Surface reinforcement doping to suppress oxygen release of Li-rich layered oxides. <i>Journal of Power Sources</i> , 2021 , 503, 230048	8.9	1
15	Growth of wrinkle-free and ultra-flat Bi-layer graphene on sapphire substrate using Cu sacrificial layer. <i>Nanotechnology</i> , 2021 , 32,	3.4	1
14	Less is more: tiny amounts of insoluble multi-functional nanoporous additives play a big role in lithium secondary batteries. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 8047-8058	13	1
13	MgSiO/Si-Coated Disproportionated SiO Composite Anodes with High Initial Coulombic Efficiency for Lithium Ion Batteries ACS Applied Materials & Emp; Interfaces, 2022,	9.5	1
12	Laser-induced dynamic alignment and nonlinear-like optical transmission in liquid suspensions of 2D atomically thin nanomaterials. <i>Optics Express</i> , 2021 , 29, 36389-36399	3.3	O
11	Carbon-emcoating architecture boosts lithium storage of Nb2O5. Science China Materials, 2021, 64, 107	17.11080	50
10	High Li-Ion Conductivity Artificial Interface Enabled by Li-Grafted Graphene Oxide for Stable Li Metal Pouch Cell. <i>ACS Applied Materials & Discrete States</i> , 2021, 13, 29500-29510	9.5	O
9	Mutual Performance Enhancement within Dual N-doped TiO2/Si/C Nanohybrid Lithium-Ion Battery Anode. <i>ChemistrySelect</i> , 2021 , 6, 141-153	1.8	O
8	A Lithium-Ion Battery Cathode with Enhanced Wettability toward an Electrolyte Fabricated by a Fast Light Curing of Photoactive Slurry. <i>Energy & Energy & En</i>	4.1	O

LIST OF PUBLICATIONS

7	Carbon-coated Monoclinic NbOPO4 with Polyanionic Framework for Rechargeable Aqueous Lithium-ion Batteries Beyond 2 V. <i>Electrochimica Acta</i> , 2022 , 140579	6.7	О
6	Si/SiOC/Carbon Lithium-Ion Battery Negative Electrode with Multiple Buffer Media Derived from Cross-Linked Dimethacrylate and Poly (dimethyl siloxane). <i>ChemistrySelect</i> , 2021 , 6, 10348-10354	1.8	
5	Porous silicon derived from 130Ihm StBer silica as lithium-ion battery anode. <i>Nano Select</i> , 2021 , 2, 1554	-13565	
4	Super-Small TiO2 Nanoparticles Homogeneously Embedded in Mesoporous Carbon Matrix Based on Dental Methacrylates and KOH Activation. <i>ChemistrySelect</i> , 2021 , 6, 1508-1518	1.8	
3	Graphene Sheets: Planar Alignment of Graphene Sheets by a Rotating Magnetic Field for Full Exploitation of Graphene as a 2D Material (Adv. Funct. Mater. 46/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870330	15.6	
2	Seamlessly Integrated Alloy-polymer Interphase for High-rate and Long-life Lithium Metal Anodes. <i>Materials Today Energy</i> , 2022 , 100988	7	
1	Relating the orientation of graphene on Cu grains by Euler Angles. <i>Surfaces and Interfaces</i> , 2022 , 30, 101837	4.1	