Adam F Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3426411/publications.pdf

Version: 2024-02-01

10986 15266 19,067 283 71 126 citations h-index g-index papers 325 325 325 20756 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Continuous-flow synthesis of mesoporous SBA-15. Microporous and Mesoporous Materials, 2022, 329, 111535.	4.4	6
2	Full-Spectrum White Light-Emitting Diodes Enabled by an Efficient Broadband Green-Emitting CaY ₂ ZrScAl ₃ O ₁₂ :Ce ³⁺ Garnet Phosphor. ACS Applied Materials & Amp; Interfaces, 2022, 14, 5643-5652.	8.0	72
3	Porous liquids unlock a new class of spatially orthogonal catalyst. CheM, 2022, 8, 9-11.	11.7	1
4	An energy transfer strategy for highly luminescent green-emitting Ce3+/Tb3+ codoped Ca2LaHf2Al3O12 garnet phosphors in white light-emitting diodes. Materials Today Chemistry, 2022, 24, 100773.	3.5	2
5	Catalytic selective ring opening of polyaromatics for cleaner transportation fuels. Energy and Environmental Science, 2022, 15, 1760-1804.	30.8	12
6	Endothermic catalytic cracking of liquid hydrocarbons for thermal management of high-speed flight vehicles. Sustainable Energy and Fuels, 2022, 6, 1664-1686.	4.9	7
7	Selective Catalytic Transfer Hydrogenation of Lignin to Alkyl Guaiacols Over NiMo/Alâ€MCMâ€41. ChemSusChem, 2022, 15, .	6.8	18
8	Alkali-Free Hydrothermally Reconstructed NiAl Layered Double Hydroxides for Catalytic Transesterification. Catalysts, 2022, 12, 286.	3.5	7
9	Full-spectrum solid-state white lighting with high color rendering index exceeding 96 based on a bright broadband green-emitting phosphor. Applied Materials Today, 2022, 27, 101439.	4.3	5
10	Rhodium promoted heteropolyacid catalysts for low temperature methanol carbonylation. Catalysis Science and Technology, 2022, 12, 3886-3897.	4.1	1
11	Unveiling the structural transitions during activation of a CO2 methanation catalyst Ru0/ZrO2 synthesised from a MOF precursor. Catalysis Today, 2021, 368, 66-77.	4.4	27
12	Aqueous-Phase Cellulose Hydrolysis over Zeolite HY Nanocrystals Grafted on Anatase Titania Nanofibers. Catalysis Letters, 2021, 151, 1467-1476.	2.6	2
13	Surfactant- and template-free hydrothermal assembly of Cu2O visible light photocatalysts for trimethoprim degradation. Applied Catalysis B: Environmental, 2021, 284, 119741.	20.2	60
14	Porous crystalline frameworks for thermocatalytic CO ₂ reduction: an emerging paradigm. Energy and Environmental Science, 2021, 14, 320-352.	30.8	61
15	Hydrogenolysis of Lignin-Derived Aromatic Ethers over Heterogeneous Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 3379-3407.	6.7	59
16	Hierarchical HZSM-5 for Catalytic Cracking of Oleic Acid to Biofuels. Nanomaterials, 2021, 11, 747.	4.1	16
17	Hierarchical bismuth vanadate/reduced graphene oxide composite photocatalyst for hydrogen evolution and bisphenol A degradation. Applied Materials Today, 2021, 22, 100963.	4.3	23
18	Impact of Surface Defects on LaNiO ₃ Perovskite Electrocatalysts for the Oxygen Evolution Reaction. Chemistry - A European Journal, 2021, 27, 14418-14426.	3.3	19

#	Article	IF	Citations
19	Flame-retardant effect of a functional DOPO-based compound on lignin-based epoxy resins. Materials Today Chemistry, 2021, 22, 100562.	3.5	13
20	Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends. Chemical Society Reviews, 2021, 50, 4564-4605.	38.1	119
21	Multifunctional Catalysts for Direct Conversion of Alcohols to Long-Chain Hydrocarbons via Deoxygenative Olefination. ACS Sustainable Chemistry and Engineering, 2021, 9, 14657-14662.	6.7	2
22	Valorization of rice husk silica waste: Organo-amine functionalized castor oil templated mesoporous silicas for biofuels synthesis. Microporous and Mesoporous Materials, 2020, 294, 109868.	4.4	18
23	Microwaveâ€Assisted Decarbonylation of Biomassâ€Derived Aldehydes using Pdâ€Doped Hydrotalcites. ChemSusChem, 2020, 13, 312-320.	6.8	21
24	Pompon Dahliaâ€like Cu ₂ O/rGO Nanostructures for Visible Light Photocatalytic H ₂ Production and 4â€Chlorophenol Degradation. ChemCatChem, 2020, 12, 1699-1709.	3.7	34
25	Catalytic applications of layered double hydroxides in biomass valorisation. Current Opinion in Green and Sustainable Chemistry, 2020, 22, 29-38.	5.9	15
26	Pd-promoted WO3-ZrO2 for low temperature NOx storage. Applied Catalysis B: Environmental, 2020, 264, 118499.	20.2	30
27	A spatially orthogonal hierarchically porous acid–base catalyst for cascade and antagonistic reactions. Nature Catalysis, 2020, 3, 921-931.	34.4	75
28	Metal–Acid Synergy: Hydrodeoxygenation of Anisole over Pt/Alâ€SBAâ€15. ChemSusChem, 2020, 13, 4775-47	75.8	1
29	Shining light on the solid–liquid interface: <i>in situ</i> / <i>operando</i> monitoring of surface catalysis. Catalysis Science and Technology, 2020, 10, 5362-5385.	4.1	21
30	Recent Advances in Heterogeneous Catalyst Design for Biorefining. Australian Journal of Chemistry, 2020, , .	0.9	2
31	Purification and immobilization of engineered glucose dehydrogenase: a new approach to producing gluconic acid from breadwaste. Biotechnology for Biofuels, 2020, 13, 100.	6.2	17
32	Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nature Communications, 2020, 11, 1263.	12.8	198
33	Bio/hydrochar Sorbents for Environmental Remediation. Energy and Environmental Materials, 2020, 3, 453-468.	12.8	50
34	Impact of Methanol Photomediated Surface Defects on Photocatalytic H ₂ Production Over Pt/TiO ₂ . Energy and Environmental Materials, 2020, 3, 202-208.	12.8	27
35	Inducing synergy in bimetallic RhNi catalysts for CO2 methanation by galvanic replacement. Applied Catalysis B: Environmental, 2020, 277, 119029.	20.2	41
36	Nanoscale materials with different dimensions for advanced electrocatalysts., 2020,, 193-218.		0

#	Article	IF	CITATIONS
37	Metal–Acid Synergy: Hydrodeoxygenation of Anisole over Pt/Alâ€SBAâ€15. ChemSusChem, 2020, 13, 4945-4953.	6.8	31
38	Extending the range of liquids available for NMR cryoporometry studies of porous materials. Microporous and Mesoporous Materials, 2019, 274, 198-202.	4.4	7
39	A core-shell SO4/Mg-Al-Fe3O4 catalyst for biodiesel production. Applied Catalysis B: Environmental, 2019, 259, 118093.	20.2	93
40	Template free mild hydrothermal synthesis of core–shell Cu ₂ O(Cu)@CuO visible light photocatalysts for <i>N</i> -acetyl- <i>para</i> -aminophenol degradation. Journal of Materials Chemistry A, 2019, 7, 20767-20777.	10.3	46
41	H3PW12O40/SBA-15 for the Solventless Synthesis of 3-Substituted Indoles. Catalysts, 2019, 9, 409.	3.5	12
42	Structureâ€Reactivity Relations in Ruthenium Catalysed Furfural Hydrogenation. ChemCatChem, 2019, 11, 3927-3932.	3.7	49
43	Cascade Aerobic Selective Oxidation over Contiguous Dual-Catalyst Beds in Continuous Flow. ACS Catalysis, 2019, 9, 5345-5352.	11.2	20
44	Unravelling mass transport in hierarchically porous catalysts. Journal of Materials Chemistry A, 2019, 7, 11814-11825.	10.3	57
45	Printing approaches to inorganic semiconductor photocatalyst fabrication. Journal of Materials Chemistry A, 2019, 7, 10858-10878.	10.3	40
46	Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nature Communications, 2019, 10, 5181.	12.8	398
47	Octanoic acid hydrodeoxygenation over bifunctional Ni/Al-SBA-15 catalysts. Catalysis Science and Technology, 2019, 9, 6673-6680.	4.1	34
48	Ga/HZSM-5 Catalysed Acetic Acid Ketonisation for Upgrading of Biomass Pyrolysis Vapours. Catalysts, 2019, 9, 841.	3. 5	20
49	Acceptorless Amine Dehydrogenation and Transamination Using Pd-Doped Hydrotalcites. ACS Catalysis, 2019, 9, 1055-1065.	11.2	37
50	Non defect-stabilized thermally stable single-atom catalyst. Nature Communications, 2019, 10, 234.	12.8	452
51	Functionalized Periodic Mesoporous Organosilicas: Tunable Hydrophobic Solid Acids for Biomass Conversion. Molecules, 2019, 24, 239.	3.8	24
52	Platinum catalysed aerobic selective oxidation of cinnamaldehyde to cinnamic acid. Catalysis Today, 2019, 333, 161-168.	4.4	18
53	A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Applied Catalysis B: Environmental, 2018, 234, 268-278.	20.2	222
54	Synthesis of Amine Functionalized Mesoporous Silicas Templated by Castor Oil for Transesterification. MRS Advances, 2018, 3, 2261-2269.	0.9	6

#	Article	IF	CITATIONS
55	Zirconia catalysed acetic acid ketonisation for pre-treatment of biomass fast pyrolysis vapours. Catalysis Science and Technology, 2018, 8, 1134-1141.	4.1	31
56	Solution-processable, niobium-doped titanium oxide nanorods for application in low-voltage, large-area electronic devices. Journal of Materials Chemistry C, 2018, 6, 1038-1047.	5. 5	5
57	Lipase immobilised on silica monoliths as continuous-flow microreactors for triglyceride transesterification. Reaction Chemistry and Engineering, 2018, 3, 68-74.	3.7	14
58	NMR cryoporometric measurements of porous silica: A method for the determination of melting point depression parameters of probe liquids. Microporous and Mesoporous Materials, 2018, 264, 265-271.	4.4	14
59	Single atom Cu(I) promoted mesoporous titanias for photocatalytic Methyl Orange depollution and H2 production. Applied Catalysis B: Environmental, 2018, 232, 501-511.	20.2	7 5
60	Magnetically-separable Fe3O4@SiO2@SO4-ZrO2 core-shell nanoparticle catalysts for propanoic acid esterification. Molecular Catalysis, 2018, 449, 137-141.	2.0	15
61	Catalytic hydrodeoxygenation of m-cresol over Ni 2 P/hierarchical ZSM-5. Catalysis Today, 2018, 304, 72-79.	4.4	63
62	Delaminated CoAlâ€Layered Double Hydroxide@TiO ₂ Heterojunction Nanocomposites for Photocatalytic Reduction of CO ₂ . Particle and Particle Systems Characterization, 2018, 35, 1700317.	2.3	40
63	Citrate-mediated sol–gel synthesis of Al-substituted sulfated zirconia catalysts for α-pinene isomerization. Molecular Catalysis, 2018, 458, 206-212.	2.0	11
64	Alkali-Free Zn–Al Layered Double Hydroxide Catalysts for Triglyceride Transesterification. Catalysts, 2018, 8, 667.	3.5	9
65	Sulfated Zirconia Catalysts for D-Sorbitol Cascade Cyclodehydration to Isosorbide: Impact of Zirconia Phase. ACS Sustainable Chemistry and Engineering, 2018, 6, 14704-14712.	6.7	25
66	Gold-catalyzed conversion of lignin to low molecular weight aromatics. Chemical Science, 2018, 9, 8127-8133.	7.4	61
67	Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production. Chemical Engineering Research and Design, 2018, 120, 339-347.	5 . 6	106
68	Tunable Silver-Functionalized Porous Frameworks for Antibacterial Applications. Antibiotics, 2018, 7, 55.	3.7	7
69	Mechanistic Aspects of Hydrodeoxygenation of <i>p</i> -Methylguaiacol over Rh/Silica and Pt/Silica. Organic Process Research and Development, 2018, 22, 1586-1589.	2.7	6
70	Sol-gel synthesis of SBA-15: Impact of HCl on surface chemistry. Microporous and Mesoporous Materials, 2018, 271, 196-202.	4.4	31
71	g-C3N4-Based Nanomaterials for Visible Light-Driven Photocatalysis. Catalysts, 2018, 8, 74.	3.5	188
72	On the Impact of the Preparation Method on the Surface Basicity of Mg–Zr Mixed Oxide Catalysts for Tributyrin Transesterification. Catalysts, 2018, 8, 228.	3.5	10

#	Article	IF	Citations
73	A porous activated carbon supported Pt catalyst for the oxidative degradation of poly[(naphthaleneformaldehyde)sulfonate]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 289-297.	5.3	7
74	ZrO ₂ -SBA-15 catalysts for the one-pot cascade synthesis of GVL from furfural. Catalysis Science and Technology, 2018, 8, 4485-4493.	4.1	69
75	Sizeâ€Dependent Visible Light Photocatalytic Performance of Cu ₂ O Nanocubes. ChemCatChem, 2018, 10, 3554-3563.	3.7	44
76	Support enhanced α-pinene isomerization over HPW/SBA-15. Applied Catalysis B: Environmental, 2017, 200, 10-18.	20.2	72
77	On the Mn promoted synthesis of higher alcohols over Cu derived ternary catalysts. Catalysis Science and Technology, 2017, 7, 988-999.	4.1	31
78	High activity magnetic core-mesoporous shell sulfonic acid silica nanoparticles for carboxylic acid esterification. Catalysis Communications, 2017, 92, 56-60.	3.3	29
79	Recent advances in the production of γâ€valerolactone from biomassâ€derived feedstocks via heterogeneous catalytic transfer hydrogenation. Journal of Chemical Technology and Biotechnology, 2017, 92, 1125-1135.	3.2	92
80	On the influence of Si:Al ratio and hierarchical porosity of FAU zeolites in solid acid catalysed esterification pretreatment of bio-oil. Biomass Conversion and Biorefinery, 2017, 7, 331-342.	4.6	50
81	Deactivation study of the hydrodeoxygenation of p-methylguaiacol over silica supported rhodium and platinum catalysts. Applied Catalysis A: General, 2017, 539, 29-37.	4.3	28
82	Tunable Ag@SiO ₂ coreâ€"shell nanocomposites for broad spectrum antibacterial applications. RSC Advances, 2017, 7, 23342-23347.	3.6	10
83	Octyl Coâ€grafted PrSO ₃ H/SBAâ€15: Tunable Hydrophobic Solid Acid Catalysts for Acetic Acid Esterification. ChemCatChem, 2017, 9, 2231-2238.	3.7	30
84	Bio-oil upgrading via vapor-phase ketonization over nanostructured FeOx and MnOx: catalytic performance and mechanistic insight. Biomass Conversion and Biorefinery, 2017, 7, 319-329.	4.6	14
85	Catalytic Hydrogenation and Hydrodeoxygenation of Furfural over Pt(111): A Model System for the Rational Design and Operation of Practical Biomass Conversion Catalysts. Journal of Physical Chemistry C, 2017, 121, 8490-8497.	3.1	66
86	P25@CoAl layered double hydroxide heterojunction nanocomposites for CO 2 photocatalytic reduction. Applied Catalysis B: Environmental, 2017, 209, 394-404.	20.2	200
87	NiO/nanoporous carbon heterogeneous Fenton catalyst for aqueous microcystine-LR decomposition. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 289-295.	5.3	11
88	A new application for transition metal chalcogenides: WS2 catalysed esterification of carboxylic acids. Catalysis Communications, 2017, 91, 16-20.	3.3	17
89	Nb2O5/SBA-15 catalyzed propanoic acid esterification. Applied Catalysis B: Environmental, 2017, 205, 498-504.	20.2	40
90	Plasma-Generated Poly(allyl alcohol) Antifouling Coatings for Cellular Attachment. ACS Biomaterials Science and Engineering, 2017, 3, 88-94.	5 . 2	6

#	Article	IF	Citations
91	Tailored mesoporous silica supports for Ni catalysed hydrogen production from ethanol steam reforming. Catalysis Communications, 2017, 91, 76-79.	3.3	51
92	Dual Wavelength (Ultraviolet and Green) Photodetectors Using Solution Processed Zinc Oxide Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36971-36979.	8.0	13
93	Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Science Advances, 2017, 3, e1700231.	10.3	361
94	H5PW10V2O40@VOx/SBA-15-NH2 catalyst for the solventless synthesis of 3-substituted indoles. Tetrahedron, 2017, 73, 5862-5871.	1.9	23
95	Diffusion NMR Characterization of Catalytic Silica Supports: A Tortuous Path. Journal of Physical Chemistry C, 2017, 121, 16250-16256.	3.1	33
96	Active Site Elucidation and Optimization in Pt Co atalysts for Photocatalytic Hydrogen Production over Titania. ChemCatChem, 2017, 9, 4268-4274.	3.7	21
97	A magnetically-separable H 3 PW 12 O 40 @Fe 3 O 4 /EN-MIL-101 catalyst for the one-pot solventless synthesis of 2H-indazolo[2,1-b] phthalazine-triones. Molecular Catalysis, 2017, 440, 96-106.	2.0	42
98	Multi-Dimensional Multi-Functional Catalytic Architecture: A Selectively Functionalized Three-Dimensional Hierarchically Ordered Macro/Mesoporous Network for Cascade Reactions Analyzed by Electron Tomography. Microscopy and Microanalysis, 2017, 23, 2042-2043.	0.4	3
99	Atomic structure of chlorine containing calcium silicate glasses by neutron diffraction and ²⁹ Si solidâ€state <scp>NMR</scp> . International Journal of Applied Glass Science, 2017, 8, 383-390.	2.0	8
100	Green Infrastructure in Urbanized Areas and Roadway Projects. , 2017, , .		0
101	Impact of Macroporosity on Catalytic Upgrading of Fast Pyrolysis Bioâ€Oil by Esterification over Silica Sulfonic Acids. ChemSusChem, 2017, 10, 3506-3511.	6.8	24
102	Acetic Acid Ketonization over Fe ₃ O ₄ /SiO ₂ for Pyrolysis Bioâ€Oil Upgrading. ChemCatChem, 2017, 9, 1648-1654.	3.7	47
103	Green Catalysts. , 2017, , 467-489.		0
104	Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. Applied Catalysis B: Environmental, 2017, 201, 159-168.	20.2	298
105	Fenton-like degradation of Bisphenol A catalyzed by mesoporous Cu/TUD-1. Applied Surface Science, 2017, 393, 67-73.	6.1	63
106	Acidity-Reactivity Relationships in Catalytic Esterification over Ammonium Sulfate-Derived Sulfated Zirconia. Catalysts, 2017, 7, 204.	3.5	41
107	Production of biodiesel via catalytic upgrading and refining of sustainable oleagineous feedstocks. , 2016, , 121-164.		1
108	Cu and Fe oxides dispersed on SBA-15: A Fenton type bimetallic catalyst for N,N -diethyl- p -phenyl diamine degradation. Applied Catalysis B: Environmental, 2016, 199, 323-330.	20.2	119

#	Article	IF	CITATIONS
109	Pore confinement effects and stabilization of carbon nitride oligomers in macroporous silica for photocatalytic hydrogen production. Carbon, 2016, 106, 320-329.	10.3	19
110	Platinum-Catalyzed Aqueous-Phase Hydrogenation of <scp>d</scp> -Glucose to <scp>d</scp> -Sorbitol. ACS Catalysis, 2016, 6, 7409-7417.	11.2	94
111	Heterogeneously Catalyzed Hydrothermal Processing of C ₅ –C ₆ Sugars. Chemical Reviews, 2016, 116, 12328-12368.	47.7	253
112	Niobic acid nanoparticle catalysts for the aqueous phase transformation of glucose and fructose to 5-hydroxymethylfurfural. Catalysis Science and Technology, 2016, 6, 7334-7341.	4.1	29
113	Influence of alkyl chain length on sulfated zirconia catalysed batch and continuous esterification of carboxylic acids by light alcohols. Green Chemistry, 2016, 18, 5529-5535.	9.0	52
114	Heterogeneously catalyzed lignin depolymerization. Applied Petrochemical Research, 2016, 6, 243-256.	1.3	42
115	Catalytic applications of waste derived materials. Journal of Materials Chemistry A, 2016, 4, 3617-3637.	10.3	159
116	Catalyst design for biorefining. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150081.	3.4	35
117	Spatially orthogonal chemical functionalization ofÂa hierarchical pore network for catalytic cascadeÂreactions. Nature Materials, 2016, 15, 178-182.	27.5	101
118	Photodeposition as a facile route to tunable Pt photocatalysts for hydrogen production: on the role of methanol. Catalysis Science and Technology, 2016, 6, 81-88.	4.1	65
119	Facile synthesis of hierarchical Cu2O nanocubes as visible light photocatalysts. Applied Catalysis B: Environmental, 2016, 189, 226-232.	20.2	132
120	Effect of Cu and Sn promotion on the catalytic deoxygenation of model and algal lipids to fuel-like hydrocarbons over supported Ni catalysts. Applied Catalysis B: Environmental, 2016, 191, 147-156.	20.2	102
121	Hierarchical mesoporous Pd/ZSM-5 for the selective catalytic hydrodeoxygenation of m-cresol to methylcyclohexane. Catalysis Science and Technology, 2016, 6, 2560-2564.	4.1	51
122	Size-controlled TiO2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen production. Applied Catalysis A: General, 2016, 521, 133-139.	4.3	57
123	Hydroxyl radical generation by cactus-like copper oxide nanoporous carbon catalysts for microcystin-LR environmental remediation. Catalysis Science and Technology, 2016, 6, 530-544.	4.1	58
124	The surface chemistry of nanocrystalline MgO catalysts for FAME production: An in situ XPS study of H2O, CH3OH and CH3OAc adsorption. Surface Science, 2016, 646, 170-178.	1.9	40
125	Progress in the Development of Mesoporous Solid Acid and Base Catalysts for Converting Carbohydrates into Platform Chemicals. Green Chemistry and Sustainable Technology, 2016, , 123-169.	0.7	2
126	Hydrophenylation of internal alkynes with boronic acids catalysed by a Ni–Zn hydroxy double salt-intercalated anionic rhodium(<scp>iii</scp>) complex. Catalysis Science and Technology, 2016, 6, 863-868.	4.1	9

#	Article	IF	Citations
127	Mesoporous sulfonic acid silicas for pyrolysis bio-oil upgrading via acetic acid esterification. Green Chemistry, 2016, 18, 1387-1394.	9.0	50
128	Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Applied Catalysis B: Environmental, 2016, 180, 580-585.	20.2	288
129	CO adsorption over Pd nanoparticles: A general framework for IR simulations on nanoparticles. Surface Science, 2016, 646, 210-220.	1.9	65
130	Hydrothermally Stable, Conformal, Sulfated Zirconia Monolayer Catalysts for Glucose Conversion to 5-HMF. ACS Catalysis, 2015, 5, 4345-4352.	11.2	137
131	Hydrothermal Saline Promoted Grafting of Periodic Mesoporous Organic Sulfonic Acid Silicas for Sustainable FAME Production. Catalysis Letters, 2015, 145, 1483-1490.	2.6	15
132	Solid base catalysed 5-HMF oxidation to 2,5-FDCA over Au/hydrotalcites: fact or fiction?. Chemical Science, 2015, 6, 4940-4945.	7.4	125
133	Synthetic strategies to nanostructured photocatalysts for CO ₂ reduction to solar fuels and chemicals. Journal of Materials Chemistry A, 2015, 3, 14487-14516.	10.3	152
134	Facile route to conformal hydrotalcite coatings over complex architectures: a hierarchically ordered nanoporous base catalyst for FAME production. Green Chemistry, 2015, 17, 2398-2405.	9.0	30
135	Catalytic upgrading of bioâ€oils by esterification. Journal of Chemical Technology and Biotechnology, 2015, 90, 780-795.	3.2	81
136	Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation. Scientific Reports, 2015, 5, 9425.	3.3	101
137	Ag Alloyed Pd Single-Atom Catalysts for Efficient Selective Hydrogenation of Acetylene to Ethylene in Excess Ethylene. ACS Catalysis, 2015, 5, 3717-3725.	11.2	545
138	Platinum-catalysed cinnamaldehyde hydrogenation in continuous flow. RSC Advances, 2015, 5, 80022-80026.	3.6	16
139	Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catalysis Today, 2015, 242, 3-18.	4.4	148
140	Physicochemical properties of WO \times /ZrO 2 catalysts for palmitic acid esterification. Applied Catalysis B: Environmental, 2015, 162, 75-84.	20.2	75
141	Valorisation of Vietnamese Rice Straw Waste: Catalytic Aqueous Phase Reforming of Hydrolysate from Steam Explosion to Platform Chemicals. Catalysts, 2014, 4, 414-426.	3.5	13
142	Identifying the active phase in Csâ€promoted <scp>MgO</scp> nanocatalysts for triglyceride transesterification. Journal of Chemical Technology and Biotechnology, 2014, 89, 73-80.	3.2	22
143	An energy-efficient route to the rapid synthesis of organically-modified SBA-15 via ultrasonic template removal. Green Chemistry, 2014, 16, 197-202.	9.0	29
144	Selective oxidation of allylic alcohols over highly ordered Pd/meso-Al2O3 catalysts. Catalysis Communications, 2014, 44, 40-45.	3.3	32

#	Article	IF	Citations
145	Bifunctional SO ₄ /ZrO ₂ catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose. Catalysis Science and Technology, 2014, 4, 333-342.	4.1	153
146	Efficient 1,4-Addition of Enones and Boronic Acids Catalyzed by a Ni–Zn Hydroxyl Double Salt-Intercalated Anionic Rhodium(III) Complex. ACS Catalysis, 2014, 4, 4040-4046.	11.2	23
147	Conformal sulfated zirconia monolayer catalysts for the one-pot synthesis of ethyl levulinate from glucose. Chemical Communications, 2014, 50, 11742-11745.	4.1	88
148	Hydrothermal saline promoted grafting: a route to sulfonic acid SBA-15 silica with ultra-high acid site loading for biodiesel synthesis. Green Chemistry, 2014, 16, 4506-4509.	9.0	43
149	UV-stable paper coated with APTES-modified P25 TiO2 nanoparticles. Carbohydrate Polymers, 2014, 114, 246-252.	10.2	63
150	Heterogeneous catalysis for sustainable biodiesel production <i>via</i> esterification and transesterification. Chemical Society Reviews, 2014, 43, 7887-7916.	38.1	614
151	Catalysing sustainable fuel and chemical synthesis. Applied Petrochemical Research, 2014, 4, 11-31.	1.3	16
152	New insights in the deactivation of sulfonic modified SBA-15 catalysts for biodiesel production from low-grade oleaginous feedstock. Applied Catalysis A: General, 2014, 488, 111-118.	4.3	17
153	Impact of co-adsorbed oxygen on crotonaldehyde adsorption over gold nanoclusters: a computational study. Physical Chemistry Chemical Physics, 2014, 16, 11202-11210.	2.8	3
154	Alumina-grafted SBA-15 as a high performance support for Pd-catalysed cinnamyl alcohol selective oxidation. Catalysis Today, 2014, 229, 46-55.	4.4	68
155	Can surface energy measurements predict the impact of catalyst hydrophobicity upon fatty acid esterification over sulfonic acid functionalised periodic mesoporous organosilicas?. Catalysis Today, 2014, 234, 167-173.	4.4	30
156	Alkali- and nitrate-free synthesis of highly active Mg–Al hydrotalcite-coated alumina for FAME production. Catalysis Science and Technology, 2014, 4, 861-870.	4.1	34
157	Hierarchically Ordered Nanoporous Pd/SBA-15 Catalyst for the Aerobic Selective Oxidation of Sterically Challenging Allylic Alcohols. ACS Catalysis, 2013, 3, 2122-2129.	11.2	59
158	Operando synchronous DRIFTS/MS/XAS as a powerful tool for guiding the design of Pd catalysts for the selective oxidation of alcohols. Catalysis Today, 2013, 205, 76-85.	4.4	31
159	Multiscale modelling of heterogeneously catalysed transesterification reaction process: an overview. RSC Advances, 2013, 3, 6226.	3.6	15
160	SO2 sequestration in large volcanic eruptions: High-temperature scavenging by tephra. Geochimica Et Cosmochimica Acta, 2013, 110, 58-69.	3.9	73
161	True liquid crystal templating of SBA-15 with reduced microporosity. Microporous and Mesoporous Materials, 2013, 172, 112-117.	4.4	18
162	Heterogeneous catalysis in an oscillatory baffled flow reactor. Catalysis Science and Technology, 2013, 3, 2373.	4.1	40

#	Article	IF	Citations
163	Zrâ€Containing Hybrid Organic–Inorganic Mesoporous Materials: Hydrophobic Acid Catalysts for Biodiesel Production ChemCatChem, 2013, 5, 994-1001.	3.7	40
164	Hierarchical porous materials: catalytic applications. Chemical Society Reviews, 2013, 42, 3876-3893.	38.1	828
165	Artificial photosynthesis as a frontier technology for energy sustainability. Energy and Environmental Science, 2013, 6, 1074.	30.8	284
166	Tunable Pt nanocatalysts for the aerobic selox of cinnamyl alcohol. Nanoscale, 2013, 5, 5412.	5.6	26
167	Mesoporous Silicas as Versatile Supports to Tune the Palladiumâ€Catalyzed Selective Aerobic Oxidation of Allylic Alcohols. ChemCatChem, 2013, 5, 939-950.	3.7	55
168	Heterogeneous Catalysts for Converting Renewable Feedstocks to Fuels and Chemicals. , 2012, , 263-304.		5
169	Preservation of York Minster historic limestone by hydrophobic surface coatings. Scientific Reports, 2012, 2, 880.	3.3	23
170	Active Site Elucidation in Heterogeneous Catalysis via In Situ X-Ray Spectroscopies. Australian Journal of Chemistry, 2012, 65, 615.	0.9	13
171	Tunable KIT-6 Mesoporous Sulfonic Acid Catalysts for Fatty Acid Esterification. ACS Catalysis, 2012, 2, 1607-1614.	11.2	183
172	On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catalysis Communications, 2012, 25, 78-82.	3.3	105
173	High-Pressure XPS of Crotyl Alcohol Selective Oxidation over Metallic and Oxidized Pd(111). ACS Catalysis, 2012, 2, 2235-2241.	11.2	43
174	Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis. Chemical Communications, 2012, 48, 212-214.	4.1	99
175	Redox-Controlled Crotyl Alcohol Selective Oxidation: In Situ Oxidation and Reduction Dynamics of Catalytic Pd Nanoparticles via Synchronous XANES/MS. ACS Catalysis, 2012, 2, 2242-2246.	11.2	22
176	Better by design: nanoengineered macroporous hydrotalcites for enhanced catalytic biodiesel production. Energy and Environmental Science, 2012, 5, 6145.	30.8	70
177	Rational design of heterogeneous catalysts for biodiesel synthesis. Catalysis Science and Technology, 2012, 2, 884.	4.1	112
178	Bifunctional Organorhodium Solid Acid Catalysts for Methanol Carbonylation. ACS Catalysis, 2012, 2, 1368-1376.	11.2	28
179	Metastable De-excitation Spectroscopy and Density Functional Theory Study of the Selective Oxidation of Crotyl Alcohol over Pd(111). Journal of Physical Chemistry C, 2011, 115, 25290-25297.	3.1	11
180	Support-Enhanced Selective Aerobic Alcohol Oxidation over Pd/Mesoporous Silicas. ACS Catalysis, 2011, 1, 636-640.	11.2	153

#	Article	IF	CITATIONS
181	Reaction-Driven Surface Restructuring and Selectivity Control in Allylic Alcohol Catalytic Aerobic Oxidation over Pd. Journal of the American Chemical Society, 2011, 133, 5724-5727.	13.7	91
182	Kinetic Modeling Studies of Heterogeneously Catalyzed Biodiesel Synthesis Reactions. Industrial & Engineering Chemistry Research, 2011, 50, 4818-4830.	3.7	53
183	A general route to synthesize supported isolated oxide and mixed-oxide nanoclusters at sizes below 5 nm. Chemical Communications, 2011, 47, 1509-1511.	4.1	14
184	Synergy of matrix and fibre modification on adhesion between carbon fibres and poly(vinylidene) Tj ETQq0 0 0 rg	gBT_/Overl 7.8	ock 10 Tf 50
185	Recent advances in the heterogeneously catalysed aerobic selective oxidation of alcohols. Journal of Chemical Technology and Biotechnology, 2011, 86, 161-171.	3.2	160
186	Hierarchical Macroporous Mesoporous Materials for Biodiesel Synthesis Materials Research Society Symposia Proceedings, 2011, 1326, 1.	0.1	0
187	In-situ X-ray Studies of Clean Catalytic Technologies. Materials Research Society Symposia Proceedings, 2011, 1351, 117001.	0.1	0
188	Hierarchical macroporous–mesoporous SBA-15 sulfonic acidcatalysts for biodiesel synthesis. Green Chemistry, 2010, 12, 296-303.	9.0	179
189	Surface catalysed Suzuki–Miyaura cross-coupling by Pd nanoparticles: an operando XAS study. Dalton Transactions, 2010, 39, 10473.	3.3	108
190	Cs Promoted Triglyceride Transesterification Over MgO Nanocatalysts. Topics in Catalysis, 2010, 53, 737-745.	2.8	29
191	Continuous Atmospheric Plasma Oxidation of Carbon Fibres: Influence on the Fibre Surface and Bulk Properties and Adhesion to Polyamide 12. Plasma Chemistry and Plasma Processing, 2010, 30, 471-487.	2.4	31
192	Impact of inâ€ine atmospheric plasma fluorination of carbon fibers on the performance of unidirectional, carbon fiberâ€reinforced polyvinylidene fluoride. Advances in Polymer Technology, 2010, 29, 86-97.	1.7	6
193	Evidence for the Surfaceâ€Catalyzed Suzuki–Miyaura Reaction over Palladium Nanoparticles: An Operando XAS Study. Angewandte Chemie - International Edition, 2010, 49, 1820-1824.	13.8	211
194	In situ studies of titania-supported Au shell–Pd core nanoparticles for the selective aerobic oxidation of crotyl alcohol. Catalysis Today, 2010, 157, 243-249.	4.4	39
195	In situ studies of structure–reactivity relations in biodiesel synthesis over nanocrystalline MgO. Chemical Engineering Journal, 2010, 161, 332-339.	12.7	49
196	Hydroxyapatite supported antibacterial Ag3PO4 nanoparticles. Journal of Materials Chemistry, 2010, 20, 8056.	6.7	99
197	Reactivity of crotonaldehyde and propene over Au/Pd(111) surfaces. Physical Chemistry Chemical Physics, 2010, 12, 2670.	2.8	25
198	Surface X-ray studies of catalytic clean technologies. Chemical Communications, 2010, 46, 3827.	4.1	23

#	Article	IF	CITATIONS
199	Interdependent lateral interactions, hydrophobicity and acid strength and their influence on the catalytic activity of nanoporous sulfonic acid silicas. Green Chemistry, 2010, 12, 1383.	9.0	109
200	Bismuthâ€Doped Ceria, Ce _{0.90} Bi _{0.10} O ₂ : A Selective and Stable Catalyst for Clean Hydrogen Combustion. Advanced Synthesis and Catalysis, 2009, 351, 1557-1566.	4.3	18
201	In situ Aberration Corrected-Transmission Electron Microscopy of Magnesium Oxide Nanocatalysts for Biodiesels. Catalysis Letters, 2009, 132, 182-188.	2.6	27
202	In situ X-ray studies of crotyl alcohol selective oxidation over Au/Pd(111) surface alloys. Catalysis Today, 2009, 145, 251-257.	4.4	38
203	Cs-doped H4SiW12O40 catalysts for biodiesel applications. Applied Catalysis A: General, 2009, 360, 50-58.	4.3	106
204	Phenol methylation over nanoparticulate CoFe2O4 inverse spinel catalysts: The effect of morphology on catalytic performance. Applied Catalysis A: General, 2009, 366, 184-192.	4.3	104
205	Inverse Gas Chromatography of As-Received and Modified Carbon Nanotubes. Langmuir, 2009, 25, 8340-8348.	3.5	52
206	lon-tagged π-acidic alkene ligands promote Pd-catalysed allyl–aryl couplings in an ionic liquid. Chemical Communications, 2009, , 5734.	4.1	18
207	Pd ⁰ ₂ (het-dba) ₃ Complexes: Effect of a Thienyl Moiety on the Reactivity of Pd ⁰ (Î- ² -th _{<i>n</i>>(let) Pd³}) ₂ /Pd ⁰ (let) Pd ⁰ /Pd ^{0<}	p> <mark>(PP</mark> h <s< td=""><td>ub>3</td></s<>	ub>3
208	In Oxidative Addition Reactions with Indobenzene, Organometallics, 2009, 28, 824-829. An Efficient Route to Highly Organized, Tunable Macroporousâ^'Mesoporous Alumina. Journal of the American Chemical Society, 2009, 131, 12896-12897.	13.7	121
209	Structure-sensitive biodiesel synthesis over MgO nanocrystals. Green Chemistry, 2009, 11, 265-268.	9.0	83
210	Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chemical Engineering Journal, 2008, 135, 63-70.	12.7	231
211	In-situ XPS Study on the Reducibility of Pd-Promoted Cu/CeO2 Catalysts for the Oxygen-assisted Water-gas-shift Reaction. Topics in Catalysis, 2008, 49, 89-96.	2.8	46
212	Preparation of Highly Active and Dispersed Platinum Nanoparticles on Mesoporous Alâ€MCMâ€48 and Their Activity in the Hydroisomerisation of <i>nâ€</i> Octane. Chemistry - A European Journal, 2008, 14, 5988-5995.	3.3	30
213	A polyoxometallate–tethered Ru complex as a catalyst in solventless phenyl acetylene oligomerisation. Catalysis Communications, 2008, 10, 53-56.	3.3	13
214	The application of calcined natural dolomitic rock as a solid base catalyst in triglyceride transesterification for biodiesel synthesis. Green Chemistry, 2008, 10, 654.	9.0	101
215	Synthesis and characterization of nanoporous phospho-tungstate organic–inorganic hybrid materials. Journal of Materials Chemistry, 2008, 18, 868.	6.7	14
216	Continuous atmospheric plasma fluorination of carbon fibres. Composites Part A: Applied Science and Manufacturing, 2008, 39, 364-373.	7.6	50

#	Article	IF	Citations
217	Surface Modification of Natural Fibers Using Bacteria: Depositing Bacterial Cellulose onto Natural Fibers To Create Hierarchical Fiber Reinforced Nanocomposites. Biomacromolecules, 2008, 9, 1643-1651.	5.4	226
218	Silver carbonate nanoparticles stabilised over alumina nanoneedles exhibiting potent antibacterial properties. Chemical Communications, 2008, , 4013.	4.1	41
219	Two-Dimensional Imaging of Giant Magnetoresistance with Improved Sensitivity. IEEE Transactions on Magnetics, 2008, 44, 2632-2635.	2.1	1
220	Selective Oxidation of Crotyl Alcohol over Pd(111). Journal of Physical Chemistry C, 2007, 111, 18844-18847.	3.1	48
221	Hydrodebromination of Bromobenzene over Pt(111). Journal of Physical Chemistry C, 2007, 111, 10455-10460.	3.1	24
222	In-Silico Prediction of Pd-Catalyzed Cross-Coupling Processes:  Dibenzylidene Acetone (dba) Ligand Control. Organometallics, 2007, 26, 4087-4089.	2.3	25
223	Highâ€Activity, Singleâ€Site Mesoporous Pd/Al ₂ O ₃ Catalysts for Selective Aerobic Oxidation of Allylic Alcohols. Angewandte Chemie - International Edition, 2007, 46, 8593-8596.	13.8	336
224	Anisotropic Surface Chemistry of Aspirin Crystals. Journal of Pharmaceutical Sciences, 2007, 96, 2134-2144.	3.3	58
225	Fluorination of carbon fibres in atmospheric plasma. Carbon, 2007, 45, 775-784.	10.3	69
226	Structure–activity relations in Cs-doped heteropolyacid catalysts for biodiesel production. Journal of Catalysis, 2007, 248, 226-234.	6.2	259
227	Remote two-dimensional imaging of giant magnetoresistance with spatial resolution of $301\frac{1}{4}$ m. Journal of Magnetism and Magnetic Materials, 2007, 316, e953-e956.	2.3	4
228	Catalysts in Production of Biodiesel: A Review. Journal of Biobased Materials and Bioenergy, 2007, 1, 19-30.	0.3	188
229	On the active site in heterogeneous palladium selox catalysts. Green Chemistry, 2006, 8, 549.	9.0	80
230	Zirconium phosphate supported tungsten oxide solid acid catalysts for the esterification of palmitic acid. Green Chemistry, 2006, 8, 790.	9.0	107
231	Structural studies of high dispersion H3PW12O40/SiO2 solid acid catalysts. Physical Chemistry Chemical Physics, 2006, 8, 2893.	2.8	109
232	Anisotropic Surface Energetics and Wettability of Macroscopic Form I Paracetamol Crystals. Langmuir, 2006, 22, 2760-2769.	3.5	93
233	Sulphate-promotion and structure-sensitivity in hydrocarbon combustion over Rh/Al2O3 catalysts. Catalysis Communications, 2006, 7, 566-570.	3.3	17
234	Sulfate-Enhanced Catalytic Destruction of 1,1,1-Trichlorethane over Pt(111). Journal of Physical Chemistry B, 2006, 110, 907-913.	2.6	4

#	Article	IF	Citations
235	Remote two-dimensional imaging of giant magnetoresistance in a synthetic spin valve with spatial resolution. Journal of Applied Physics, 2006, 99, 08T101.	2.5	3
236	An XPS study of pulsed plasma polymerised allyl alcohol film growth on polyurethane. Applied Surface Science, 2006, 252, 8203-8211.	6.1	30
237	Exploiting Noninnocent (E,E)-Dibenzylideneacetone (dba) Effects in Palladium(0)-Mediated Cross-Coupling Reactions: Modulation of the Electronic Properties of dba Affects Catalyst Activity and Stability in Ligand and Ligand-Free Reaction Systems. Chemistry - A European Journal, 2006, 12, 8750-8761.	3.3	89
238	Remote two-dimensional imaging of giant magnetoresistance with spatial resolution. Applied Physics Letters, 2006, 88, 022502.	3.3	9
239	Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Applied Catalysis A: General, 2005, 287, 183-190.	4.3	512
240	High activity, templated mesoporous SO4/ZrO2/HMS catalysts with controlled acid site density for \hat{l}_{\pm} -pinene isomerisation. Microporous and Mesoporous Materials, 2005, 80, 301-310.	4.4	46
241	Halogenated-2-pyrones in Sonogashira cross-coupling: limitations, optimisation and consequences for GC analysis of Pd-mediated reactions. Tetrahedron, 2005, 61, 9827-9838.	1.9	24
242	Electrocoating of carbon fibres: A route for interface control in carbon fibre reinforced poly methylmethacrylate?. Composites Science and Technology, 2005, 65, 1564-1573.	7.8	26
243	Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies. Journal of Catalysis, 2005, 231, 159-171.	6.2	300
244	On the active site in H3PW12O40/SiO2 catalysts for fine chemical synthesis. Catalysis Letters, 2005, 102, 45-50.	2.6	69
245	Preparation of a microporous silicon oximide gel from the reaction of tris(dimethylamino)silylamine with formamide and its pyrolytic conversion into a silicon oxynitride based glass. Journal of Materials Chemistry, 2005, 15, 3039.	6.7	7
246	Support-Mediated Alkane Activation over Pt–SO4/Al2O3Catalysts. Catalysis Letters, 2004, 94, 25-29.	2.6	11
247	Important consequences for gas chromatographic analysis of the Sonogashira cross-coupling reaction. Tetrahedron Letters, 2004, 45, 3593-3595.	1.4	17
248	A Fast XPS study of the surface chemistry of ethanol over Pt{111}. Surface Science, 2004, 548, 200-208.	1.9	141
249	Physicochemical properties of Pt-SO4/Al2O3 alkane oxidation catalysts. Physical Chemistry Chemical Physics, 2004, 6, 3907.	2.8	19
250	Structure–reactivity correlations in the selective aerobic oxidation of cinnamyl alcohol: in situ XAFS. Green Chemistry, 2004, 6, 37-42.	9.0	75
251	Mono- and binuclear cyclometallated palladium(ii) complexes containing bridging (N,O-) and terminal (N-) imidate ligands: Air stable, thermally robust and recyclable catalysts for cross-coupling processes. Dalton Transactions, 2004, , 3970-3981.	3.3	85
252	Low temperature 1,1,1-trichloroethane dehydrochlorination over Pt catalysts: from model surfaces to the real world. Chemical Communications, 2004, , 2774.	4.1	6

#	Article	IF	CITATIONS
253	Direct Observation of Extremely Low Temperature Catalytic Dehydrochlorination of 1,1,1-Trichloroethane over Platinum. Journal of Physical Chemistry B, 2004, 108, 14811-14814.	2.6	9
254	Li–CaO catalysed tri-glyceride transesterification for biodiesel applications. Green Chemistry, 2004, 6, 335-340.	9.0	217
255	î-2-dba Complexes of Pd(0):  The Substituent Effect in Suzukiâ^'Miyaura Coupling. Organic Letters, 2004, 6, 4435-4438.	4.6	151
256	New Catalytic Materials for Clean Technology. Nanostructure Science and Technology, 2004, , 293-312.	0.1	2
257	Title is missing!. Catalysis Letters, 2003, 88, 47-53.	2.6	53
258	Structure–reactivity correlations in sulphated-zirconia catalysts for the isomerisation of α-pinene. Journal of Catalysis, 2003, 215, 57-65.	6.2	93
259	Propene combustion over a model Pt/Al2O3/NiAl{110} catalyst. Physical Chemistry Chemical Physics, 2003, 5, 3299.	2.8	9
260	Fast x-ray spectroscopy study of ethene on clean and SO4 precovered $Pt\{111\}$. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 563-568.	2.1	18
261	A fast XPS investigation of NO-promoted acetylene cyclotrimerisation on Pd{}. Surface Science, 2002, 501, L165-L170.	1.9	9
262	Structure and reactivity of sol–gel sulphonic acid silicas. Applied Catalysis A: General, 2002, 228, 127-133.	4.3	188
263	A fast XPS study of sulphate promoted propene decomposition over Pt{}. Surface Science, 2002, 513, 140-148.	1.9	21
264	A Fast XPS Study of Propene Decomposition over Clean and Sulphated Pt{111}. Catalysis Letters, 2002, 78, 379-382.	2.6	13
265	Electrografting of poly (carbazole-co-acrylamide) onto highly oriented pyrolytic graphite. A cyclovoltammetric, atomic force microscopic and ellipsometric study. Surface and Coatings Technology, 2001, 145, 164-175.	4.8	21
266	In situ observation of a surface catalysed chemical reaction by fast X-ray photoelectron spectroscopy. Studies in Surface Science and Catalysis, 2000, 130, 3095-3100.	1.5	0
267	SO2-promoted propane oxidation over Pt/Al2O3 catalysts. Studies in Surface Science and Catalysis, 2000, 130, 353-358.	1.5	2
268	Synergic interactions in a urania–titania catalyst for isobutene partial oxidation. Catalysis Letters, 2000, 70, 183-186.	2.6	5
269	Structure and stability of the platinum/aluminium interface: alloying and substrate vacancy formation on Pt{111}/Al. Surface Science, 2000, 446, 145-152.	1.9	7
270	Aspects of allylic alcohol oxidationâ€"a bimetallic heterogeneous selective oxidation catalyst. Green Chemistry, 2000, 2, 279-282.	9.0	50

#	Article	IF	CITATIONS
271	On the Coverage-Dependent Adsorption Geometry of Benzene Adsorbed on $Pd\{111\}$: A Study by Fast XPS and NEXAFS. Journal of Physical Chemistry B, 2000, 104, 11729-11733.	2.6	63
272	The Origin of SO2 Promotion of Propane Oxidation over Pt/Al2O3 Catalysts. Journal of Catalysis, 1999, 184, 491-498.	6.2	113
273	Novel supported uranium oxide catalysts for NOx abatement. Chemical Communications, 1999, , 725-726.	4.1	24
274	In Situ Observation of a Surface Chemical Reaction by Fast X-Ray Photoelectron Spectroscopy. Journal of the American Chemical Society, 1999, 121, 7969-7970.	13.7	21
275	Electronic, Structural, and Reactive Properties of Ultrathin Aluminum Oxide Films on Pt(111). Journal of Physical Chemistry B, 1998, 102, 1736-1744.	2.6	26
276	Oxidation of Sn overlayers and the structure and stability of Sn oxide films on Pd(111). Physical Review B, 1998, 58, 4156-4165.	3.2	40
277	A Photoelectron Diffraction Study of the $Pd\{111\}(\hat{a}^*\hat{s}3x\hat{a}^*\hat{s}3)R30\hat{A}^\circ$ -CO Chemisorption Phase. Zeitschrift Fur Physikalische Chemie, 1997, 198, 73-85.	2.8	17
278	Structureâ^'Reactivity Correlations in the Catalytic Coupling of Ethyne over Novel Bimetallic Pd/Sn Catalysts. Journal of Physical Chemistry B, 1997, 101, 2797-2805.	2.6	40
279	Structural and electronic properties of Sn overlayers and surface alloys on Pd(111). Surface Science, 1997, 373, 195-209.	1.9	52
280	Growth morphology and electronic properties of ultrathin Al films on Pt(111). Surface Science, 1997, 387, 257-268.	1.9	18
281	Investigation of an Alternative Reaction Pathway in the Cyclization of Ethyne to Benzene on Palladium: Cyclooctatetraene on $Pd(111)$. Journal of the American Chemical Society, 1995, 117, 7719-7725.	13.7	18
282	Structural and Catalytic Properties of Novel Au/Pd Bimetallic Colloid Particles: EXAFS, XRD, and Acetylene Coupling. The Journal of Physical Chemistry, 1995, 99, 6096-6102.	2.9	220
283	Applications of XPS to the study of inorganic compounds. Spectroscopic Properties of Inorganic and Organometallic Compounds, 0, , 72-86.	0.4	1