Shahrouz Taranejoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3425976/publications.pdf

Version: 2024-02-01

123 8,439 papers citations

45317
45 90
h-index g-index

126 126 all docs citations

126 times ranked 10861 citing authors

#	Article	IF	Citations
1	Soft, Disruptive and Wearable Electrochemical Biosensors. Current Analytical Chemistry, 2022, 18, 689-704.	1.2	7
2	Soft Plasmonics: Design, Fabrication, Characterization, and Applications. Advanced Optical Materials, 2022, 10, 2101436.	7.3	12
3	Cell Sheetâ€Like Soft Nanoreactor Arrays. Advanced Materials, 2022, 34, e2105630.	21.0	4
4	A gold nanowire-integrated soft wearable system for dynamic continuous non-invasive cardiac monitoring. Biosensors and Bioelectronics, 2022, 205, 114072.	10.1	15
5	Thermoresponsive chiral plasmonic nanoparticles. Nanoscale, 2022, 14, 4292-4303.	5.6	6
6	Two-Dimensional Plasmonic Nanoassemblies: Fabrication, Properties, and Applications., 2022, , 351-407.		1
7	Stimuli Responsive Plasmonic Nanoparticles. , 2022, , 539-584.		O
8	Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta, 2021, 222, 121484.	5.5	104
9	Orientation-Dependent Soft Plasmonics of Gold Nanobipyramid Plasmene Nanosheets. Nano Letters, 2021, 21, 389-396.	9.1	9
10	Soft gold nanowire sponge antenna for battery-free wireless pressure sensors. Nanoscale, 2021, 13, 3957-3966.	5.6	17
11	Seagrass-inspired design of soft photocatalytic sheets based on hydrogel-integrated free-standing 2D nanoassemblies of multifunctional nanohexagons. Materials Horizons, 2021, 8, 2533-2540.	12.2	10
12	Power generation for wearable systems. Energy and Environmental Science, 2021, 14, 2114-2157.	30.8	178
13	Nanowireâ€Based Soft Wearable Human–Machine Interfaces for Future Virtual and Augmented Reality Applications. Advanced Functional Materials, 2021, 31, 2008347.	14.9	80
14	Soft Wearable Healthcare Materials and Devices. Advanced Healthcare Materials, 2021, 10, e2100577.	7.6	71
15	Smart materials and devices for electronic textiles. MRS Bulletin, 2021, 46, 488-490.	3.5	6
16	Active strain engineering of soft plasmene nanosheets by thermoresponsive hydrogels. Journal of Materials Chemistry C, 2021, 9, 12720-12726.	5 . 5	5
17	Fineâ€Tuning Au@Pd Nanocrystals for Maximum Plasmonâ€Enhanced Catalysis. Advanced Materials Interfaces, 2021, 8, 2001686.	3.7	17
18	Mechanically-gated electrochemical ionic channels with chemically modified vertically aligned gold nanowires. IScience, 2021, 24, 103307.	4.1	3

#	Article	lF	Citations
19	Two-Dimensional Nanoassemblies from Plasmonic Matryoshka Nanoframes. Journal of Physical Chemistry C, 2021, 125, 27753-27762.	3.1	5
20	Freeâ€Standing 2D Nanoassemblies. Advanced Functional Materials, 2020, 30, 1902301.	14.9	45
21	Disruptive, Soft, Wearable Sensors. Advanced Materials, 2020, 32, e1904664.	21.0	272
22	Multiscale Soft–Hard Interface Design for Flexible Hybrid Electronics. Advanced Materials, 2020, 32, e1902278.	21.0	65
23	Intrinsically Stretchable Fuel Cell Based on Enokitakeâ€Like Standing Gold Nanowires. Advanced Energy Materials, 2020, 10, 1903512.	19.5	34
24	Design of Stretchable Holey Gold Biosensing Electrode for Real-Time Cell Monitoring. ACS Sensors, 2020, 5, 3165-3171.	7.8	22
25	Direct Imaging of Liquid–Nanoparticle Interfaces with Atom Probe Tomography. Journal of Physical Chemistry C, 2020, 124, 19389-19395.	3.1	13
26	Skinâ€Like Stretchable Fuel Cell Based on Goldâ€Nanowireâ€Impregnated Porous Polymer Scaffolds. Small, 2020, 16, e2003269.	10.0	22
27	Highly Selective Nanostructured Electrochemical Sensor Utilizing Densely Packed Ultrathin Gold Nanowires Film. Electroanalysis, 2020, 32, 1850-1858.	2.9	11
28	Enzyme-like electrocatalysis from 2D gold nanograss-nanocube assemblies. Journal of Colloid and Interface Science, 2020, 575, 24-34.	9.4	6
29	Electronic Skin Wearable Sensors for Detecting Lumbar–Pelvic Movements. Sensors, 2020, 20, 1510.	3.8	21
30	Dynamically functioning and highly stretchable epidermal supercapacitor based on vertically aligned gold nanowire skins. EcoMat, 2020, 2, e12022.	11.9	26
31	Preparation and characterization of polylactic-co-glycolic acid/insulin nanoparticles encapsulated in methacrylate coated gelatin with sustained release for specific medical applications. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 910-937.	3.5	8
32	Vertically Aligned Gold Nanowires as Stretchable and Wearable Epidermal Ion-Selective Electrode for Noninvasive Multiplexed Sweat Analysis. Analytical Chemistry, 2020, 92, 4647-4655.	6.5	108
33	A Soft Resistive Acoustic Sensor Based on Suspended Standing Nanowire Membranes with Point Crack Design. Advanced Functional Materials, 2020, 30, 1910717.	14.9	68
34	Self-assembly and characterization of 2D plasmene nanosheets. Nature Protocols, 2019, 14, 2691-2706.	12.0	37
35	Out-of-Hospital Body Movement Data Collection Using E-Skin Sensors. , 2019, , .		0
36	Hierarchically Structured Vertical Gold Nanowire Array-Based Wearable Pressure Sensors for Wireless Health Monitoring. ACS Applied Materials & Description (2014), 11, 29014-29021.	8.0	148

#	Article	IF	Citations
37	Catâ€Tailâ€Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors. ChemPlusChem, 2019, 84, 1030-1030.	2.8	1
38	Local Crackâ€Programmed Gold Nanowire Electronic Skin Tattoos for Inâ€Plane Multisensor Integration. Advanced Materials, 2019, 31, e1903789.	21.0	161
39	Real-Time and In-Situ Monitoring of H ₂ O ₂ Release from Living Cells by a Stretchable Electrochemical Biosensor Based on Vertically Aligned Gold Nanowires. Analytical Chemistry, 2019, 91, 13521-13527.	6.5	66
40	A multifunctional biomimetic hybrid nanocarrier for the controlled delivery of chemotherapy drugs by near-infrared light. New Journal of Chemistry, 2019, 43, 2752-2757.	2.8	8
41	Plasmene Metasurface Absorbers: Electromagnetic Hot Spots and Hot Carriers. ACS Photonics, 2019, 6, 314-321.	6.6	23
42	Covalent-Cross-Linked Plasmene Nanosheets. ACS Nano, 2019, 13, 6760-6769.	14.6	19
43	High-adhesion vertically aligned gold nanowire stretchable electrodes <i>via</i> a thin-layer soft nailing strategy. Nanoscale Horizons, 2019, 4, 1380-1387.	8.0	11
44	A Janus gold nanowire electrode for stretchable micro-supercapacitors with distinct capacitances. Journal of Materials Chemistry A, 2019, 7, 14233-14238.	10.3	23
45	2D Freestanding Janus Gold Nanocrystal Superlattices. Advanced Materials, 2019, 31, e1900989.	21.0	38
46	Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat. Analytical Chemistry, 2019, 91, 6569-6576.	6.5	209
47	Electronic Skins Based on Liquid Metals. Proceedings of the IEEE, 2019, 107, 2168-2184.	21.3	77
48	Liquid–Solid Interfacial Assemblies of Soft Materials for Functional Freestanding Layered Membrane–Based Devices toward Electrochemical Energy Systems. Advanced Energy Materials, 2019, 9, 1804005.	19.5	18
49	Multicompartmentalized vesosomes containing DOX loaded liposomes and 5FU loaded liposomes for synergistic tumor treatment. New Journal of Chemistry, 2019, 43, 4895-4899.	2.8	20
50	Catâ€Tailâ€Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors. ChemPlusChem, 2019, 84, 1031-1038.	2.8	6
51	A General Approach to Free-Standing Nanoassemblies <i>via</i> Acoustic Levitation Self-Assembly. ACS Nano, 2019, 13, 5243-5250.	14.6	46
52	Effect of Organic Modification on Multiwalled Carbon Nanotube Dispersions in Highly Concentrated Emulsions. ACS Omega, 2019, 4, 6647-6659.	3 . 5	16
53	Embedding Pinhole Vertical Gold Nanowire Electronic Skins for Braille Recognition. Small, 2019, 15, e1804853.	10.0	19
54	Site-specific Ag coating on concave Au nanoarrows by controlling the surfactant concentration. Nanoscale Horizons, 2019, 4, 940-946.	8.0	11

#	Article	IF	Citations
55	An Adaptive Soft Plasmonic Nanosheet Resonator. Laser and Photonics Reviews, 2019, 13, 1800302.	8.7	5
56	Functional Graphene Derivatives for Chemotherapy-Based Synergistic Tumor Therapy. Nano, 2019, 14, 1930006.	1.0	4
57	Patterning Vertically Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors. Advanced Electronic Materials, 2019, 5, 1800509.	5.1	48
58	A Mossâ€Inspired Electroless Goldâ€Coating Strategy Toward Stretchable Fiber Conductors by Dry Spinning. Advanced Electronic Materials, 2019, 5, 1800462.	5.1	62
59	A Wearable Second Skinâ€Like Multifunctional Supercapacitor with Vertical Gold Nanowires and Electrochromic Polyaniline. Advanced Materials Technologies, 2019, 4, 1800473.	5. 8	88
60	Hierarchical drug release of pH-sensitive liposomes encapsulating aqueous two phase system. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 177-182.	4.3	24
61	A Facile Ion-Doping Strategy To Regulate Tumor Microenvironments for Enhanced Multimodal Tumor Theranostics. Journal of the American Chemical Society, 2018, 140, 106-109.	13.7	229
62	Shape Transformation of Constituent Building Blocks within Self-Assembled Nanosheets and Nano-origami. ACS Nano, 2018, 12, 1014-1022.	14.6	18
63	Highly Stretchable Fiber-Shaped Supercapacitors Based on Ultrathin Gold Nanowires with Double-Helix Winding Design. ACS Applied Materials & Interfaces, 2018, 10, 42612-42620.	8.0	47
64	Effect of Incorporation of Multiwalled Carbon Nanotubes on the Microstructure and Flow Behavior of Highly Concentrated Emulsions. ACS Omega, 2018, 3, 13584-13597.	3.5	14
65	Vertical Gold Nanowires Stretchable Electrochemical Electrodes. Analytical Chemistry, 2018, 90, 13498-13505.	6.5	58
66	The Virtual-Spine Platformâ€"Acquiring, visualizing, and analyzing individual sitting behavior. PLoS ONE, 2018, 13, e0195670.	2.5	2
67	Fractal Gold Nanoframework for Highly Stretchable Transparent Strain-Insensitive Conductors. Nano Letters, 2018, 18, 3593-3599.	9.1	62
68	Grapheneâ€Enhanced 3D Chemical Mapping of Biological Specimens at Nearâ€Atomic Resolution. Advanced Functional Materials, 2018, 28, 1801439.	14.9	14
69	Recent progress in stretchable supercapacitors. Journal of Materials Chemistry A, 2018, 6, 15478-15494.	10.3	188
70	Unconventional Janus Properties of Enokitake-like Gold Nanowire Films. ACS Nano, 2018, 12, 8717-8722.	14.6	65
71	2D Binary Plasmonic Nanoassemblies with Semiconductor n/pâ€Doping‣ike Properties. Advanced Materials, 2018, 30, e1801118.	21.0	28
72	Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward "Invisible―Wearable Sensors for Detecting Emotional Expression and Apexcardiogram. Advanced Functional Materials, 2017, 27, 1700845.	14.9	257

#	Article	lF	Citations
73	Pulsed-voltage atom probe tomography of low conductivity and insulator materials by application of ultrathin metallic coating on nanoscale specimen geometry. Ultramicroscopy, 2017, 181, 150-159.	1.9	9
74	Resistive electronic skin. Journal of Materials Chemistry C, 2017, 5, 5845-5866.	5 . 5	161
7 5	Oneâ€Dimensional Nanomaterials for Soft Electronics. Advanced Electronic Materials, 2017, 3, 1600314.	5.1	271
76	Poly(N-isopropylacrylamide) capped plasmonic nanoparticles as resonance intensity-based temperature sensors with linear correlation. Journal of Materials Chemistry C, 2017, 5, 10926-10932.	5 . 5	19
77	Humidityâ€Responsive Singleâ€Nanoparticleâ€Layer Plasmonic Films. Advanced Materials, 2017, 29, 1606796.	21.0	25
78	Copper Nanowireâ€Filled Soft Elastomer Composites for Applications as Thermal Interface Materials. Advanced Materials Interfaces, 2017, 4, 1700387.	3.7	57
79	Toward Soft Skin‣ike Wearable and Implantable Energy Devices. Advanced Energy Materials, 2017, 7, 1700648.	19.5	175
80	3D Printed Anchoring Sutures for Permanent Shaping of Tissues. Macromolecular Bioscience, 2017, 17, 1700304.	4.1	7
81	Black Gold: Broadband, High Absorption of Visible Light for Photochemical Systems. Advanced Functional Materials, 2017, 27, 1604080.	14.9	67
82	Self-Assembled Plasmonic Pyramids from Anisotropic Nanoparticles for High-Efficient SERS. Journal of Analysis and Testing, 2017, 1, 335-343.	5.1	7
83	Selfâ€assembled Ultrathin Gold Nanowires as Highly Transparent, Conductive and Stretchable Supercapacitor. Electroanalysis, 2016, 28, 1298-1304.	2.9	7 3
84	Stretchableâ€Fiberâ€Confined Wetting Conductive Liquids as Wearable Human Health Monitors. Advanced Functional Materials, 2016, 26, 4511-4517.	14.9	79
85	A pH-responsive asymmetric lipid vesicle as drug carrier. Journal of Microencapsulation, 2016, 33, 663-668.	2.8	17
86	Dual effect of F-actin targeted carrier combined with antimitotic drug on aggressive colorectal cancer cytoskeleton: Allying dissimilar cell cytoskeleton disrupting mechanisms. International Journal of Pharmaceutics, 2016, 513, 464-472.	5.2	13
87	Skin inspired fractal strain sensors using a copper nanowire and graphite microflake hybrid conductive network. Nanoscale, 2016, 8, 16596-16605.	5.6	60
88	Bioreducible PEI-functionalized glycol chitosan: A novel gene vector with reduced cytotoxicity and improved transfection efficiency. Carbohydrate Polymers, 2016, 153, 160-168.	10.2	46
89	Microfluidic Manipulation of Core/Shell Nanoparticles for Oral Delivery of Chemotherapeutics: A New Treatment Approach for Colorectal Cancer. Advanced Materials, 2016, 28, 4134-4141.	21.0	74
90	Fabrication of Highly Transparent and Flexible NanoMesh Electrode via Selfâ€assembly of Ultrathin Gold Nanowires. Advanced Electronic Materials, 2016, 2, 1600121.	5.1	112

#	Article	IF	CITATIONS
91	Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors. Materials Horizons, 2016, 3, 208-213.	12.2	121
92	Tumor cell-specific photothermal killing by SELEX-derived DNA aptamer-targeted gold nanorods. Nanoscale, 2016, 8, 187-196.	5.6	35
93	Matryoshka-caged gold nanorods: Synthesis, plasmonic properties, and catalytic activity. Nano Research, 2016, 9, 415-423.	10.4	31
94	Ultra-sensitive photon sensor based on self-assembled nanoparticle plasmonic membrane resonator. , 2016, , .		2
95	Sensors: Mimosaâ€Inspired Design of a Flexible Pressure Sensor with Touch Sensitivity (Small 16/2015). Small, 2015, 11, 1885-1885.	10.0	4
96	SERS: Ultrathin Plasmene Nanosheets as Soft and Surface-Attachable SERS Substrates with High Signal Uniformity (Advanced Optical Materials 7/2015). Advanced Optical Materials, 2015, 3, 918-918.	7.3	3
97	Dual oded Plasmene Nanosheets as Nextâ€Generation Anticounterfeit Security Labels. Advanced Optical Materials, 2015, 3, 1710-1717.	7.3	78
98	Ultrathin Plasmene Nanosheets as Soft and Surfaceâ€Attachable SERS Substrates with High Signal Uniformity. Advanced Optical Materials, 2015, 3, 919-924.	7.3	66
99	Highly Stretchy Black Gold Eâ€Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Advanced Electronic Materials, 2015, 1, 1400063.	5.1	405
100	Substrate-Mediated Broadband Tunability in Plasmonic Resonances of Metal Nanoantennas on Finite High-Permittivity Dielectric Substrate. Plasmonics, 2015, 10, 1663-1673.	3.4	13
101	Self-Luminous Fiber-Reinforced Polymer Composites for Structural Applications. Journal of Materials in Civil Engineering, 2015, 27, 04014120.	2.9	4
102	Enhanced enzymatic degradation resistance of plasmid DNA in ionic liquids. RSC Advances, 2015, 5, 43839-43844.	3.6	10
103	Probing Soft Corona Structures of DNA-Capped Nanoparticles by Small Angle Neutron Scattering. Journal of Physical Chemistry C, 2015, 119, 18773-18778.	3.1	10
104	Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16760-16766.	8.0	103
105	Self-Assembled Nanocube-Based Plasmene Nanosheets as Soft Surface-Enhanced Raman Scattering Substrates toward Direct Quantitative Drug Identification on Surfaces. Analytical Chemistry, 2015, 87, 5263-5269.	6.5	82
106	Free-Standing Bilayered Nanoparticle Superlattice Nanosheets with Asymmetric Ionic Transport Behaviors. ACS Nano, 2015, 9, 11218-11224.	14.6	45
107	A review of the developments of characteristics of PEI derivatives for gene delivery applications. Journal of Applied Polymer Science, 2015, 132, .	2.6	108
108	Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors. ACS Applied Materials & Interfaces, 2015, 7, 19700-19708.	8.0	273

#	Article	IF	CITATIONS
109	Classification of stimuli–responsive polymers as anticancer drug delivery systems. Drug Delivery, 2015, 22, 145-155.	5.7	118
110	Large-Scale Self-Assembly and Stretch-Induced Plasmonic Properties of Core–Shell Metal Nanoparticle Superlattice Sheets. Journal of Physical Chemistry C, 2014, 118, 26816-26824.	3.1	42
111	Development of ultrasmall chitosan/succinyl βâ€cyclodextrin nanoparticles as a sustained proteinâ€delivery system. Journal of Applied Polymer Science, 2014, 131, .	2.6	12
112	Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres. Plasmonics, 2014, 9, 659-672.	3.4	28
113	DNA based strategy to nanoparticle superlattices. Methods, 2014, 67, 215-226.	3.8	12
114	A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications, 2014, 5, 3132.	12.8	1,731
115	Polyelectrolyte Nanocomposite Membranes, Based on Chitosan-phosphotungstic Acid Complex and Montmorillonite for Fuel Cells Applications. Journal of Macromolecular Science - Physics, 2013, 52, 1226-1241.	1.0	17
116	Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties. Journal of Materials Chemistry A, 2013, 1, 6723.	10.3	132
117	Synthesis and characterization of thiolated carboxymethyl chitosan-graft-cyclodextrin nanoparticles as a drug delivery vehicle for albendazole. Journal of Materials Science: Materials in Medicine, 2013, 24, 1939-1949.	3.6	34
118	Investigation of gelation mechanism of an injectable hydrogel based on chitosan by rheological measurements for a drug delivery application. Soft Matter, 2012, 8, 7128.	2.7	70
119	Adaptive DNA-based materials for switching, sensing, and logic devices. Journal of Materials Chemistry, 2011, 21, 6113.	6.7	26
120	Free-Standing Polymer–Nanoparticle Superlattice Sheets Self-Assembled at the Air–Liquid Interface. Crystal Growth and Design, 2011, 11, 4742-4746.	3.0	56
121	Ultraflexible plasmonic nanocomposite aerogel. RSC Advances, 2011, 1, 1265.	3.6	23
122	Chitosan microparticles loaded with exotoxin A subunit antigen for intranasal vaccination against Pseudomonas aeruginosa: An in vitro study. Carbohydrate Polymers, 2011, 83, 1854-1861.	10.2	30
123	Chitosan–Cyclodextrin Complexes: Gene–Drug Delivery. , 0, , 1648-1665.		O