Romain F Laine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3425605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nature Methods, 2022, 19, 829-832.	9.0	269
2	A method for the fast and photonâ€efficient analysis of timeâ€domain fluorescence lifetime image data over large dynamic ranges. Journal of Microscopy, 2022, 287, 138-147.	0.8	2
3	DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches. Communications Biology, 2022, 5, .	2.0	30
4	Single-Molecule Super-Resolution Imaging of T-Cell Plasma Membrane CD4 Redistribution upon HIV-1 Binding. Viruses, 2021, 13, 142.	1.5	10
5	Application of Super-Resolution and Advanced Quantitative Microscopy to the Spatio-Temporal Analysis of Influenza Virus Replication. Viruses, 2021, 13, 233.	1.5	9
6	Comparative Studies in the A30P and A53T α-Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 552549.	1.8	12
7	Democratising deep learning for microscopy with ZeroCostDL4Mic. Nature Communications, 2021, 12, 2276.	5.8	295
8	lmaging in focus: An introduction to denoising bioimages in the era of deep learning. International Journal of Biochemistry and Cell Biology, 2021, 140, 106077.	1.2	27
9	Avoiding a replication crisis in deep-learning-based bioimage analysis. Nature Methods, 2021, 18, 1136-1144.	9.0	56
10	Fluctuation-Based Super-Resolution Traction Force Microscopy. Nano Letters, 2020, 20, 2230-2245.	4.5	47
11	Automated cell tracking using StarDist and TrackMate. F1000Research, 2020, 9, 1279.	0.8	34
12	NanoJ: a high-performance open-source super-resolution microscopy toolbox. Journal Physics D: Applied Physics, 2019, 52, 163001.	1.3	120
13	Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α-Synuclein and Polyglutamine in Aging <i>Caenorhabditis elegans</i> . ACS Chemical Biology, 2019, 14, 1628-1636.	1.6	30
14	Automating multimodal microscopy with NanoJ-Fluidics. Nature Communications, 2019, 10, 1223.	5.8	84
15	Optij: Open-source optical projection tomography of large organ samples. Scientific Reports, 2019, 9, 15693.	1.6	20
16	Artificial intelligence for microscopy: what you should know. Biochemical Society Transactions, 2019, 47, 1029-1040.	1.6	75
17	Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans. ELife, 2019, 8, .	2.8	51
18	C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nature Communications, 2018, 9, 712.	5.8	223

ROMAIN F LAINE

#	Article	IF	CITATIONS
19	Probing the Growth Kinetics for the Formation of Uniform 1D Block Copolymer Nanoparticles by Living Crystallization-Driven Self-Assembly. ACS Nano, 2018, 12, 8920-8933.	7.3	60
20	Structured illumination microscopy combined with machine learning enables the high throughput analysis and classification of virus structure. ELife, 2018, 7, .	2.8	20
21	Single Molecule Translation Imaging Visualizes the Dynamics of Local β-Actin Synthesis in Retinal Axons. Scientific Reports, 2017, 7, 709.	1.6	53
22	RNA Docking and Local Translation Regulate Site-Specific Axon Remodeling InÂVivo. Neuron, 2017, 95, 852-868.e8.	3.8	163
23	From single-molecule spectroscopy to super-resolution imaging of the neuron: a review. Methods and Applications in Fluorescence, 2016, 4, 022004.	1.1	19
24	<scp>HSV</scp> â€I Glycoproteins Are Delivered to Virus Assembly Sites Through Dynaminâ€Dependent Endocytosis. Traffic, 2016, 17, 21-39.	1.3	63
25	De novo design of a biologically active amyloid. Science, 2016, 354, .	6.0	63
26	Nanoscopic insights into seeding mechanisms and toxicity of α-synuclein species in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3815-3819.	3.3	63
27	In Situ Visualization of Block Copolymer Selfâ€Assembly in Organic Media by Superâ€Resolution Fluorescence Microscopy. Chemistry - A European Journal, 2015, 21, 18539-18542.	1.7	48
28	Structural analysis of herpes simplex virus by optical super-resolution imaging. Nature Communications, 2015, 6, 5980.	5.8	125
29	Retarded PDI diffusion and a reductive shift in poise of the calcium depleted endoplasmic reticulum. BMC Biology, 2015, 13, 2.	1.7	39
30	A Method to Quantify FRET Stoichiometry with Phasor Plot Analysis and Acceptor Lifetime Ingrowth. Biophysical Journal, 2015, 108, 999-1002.	0.2	21
31	Fluorescence Lifetime Readouts of Troponin-C-Based Calcium FRET Sensors: A Quantitative Comparison of CFP and mTFP1 as Donor Fluorophores. PLoS ONE, 2012, 7, e49200.	1.1	24
32	Förster resonance energy transfer imaging in vivo with approximated radiative transfer equation. Applied Optics, 2011, 50, 6583.	2.1	1
33	In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse. Biomedical Optics Express, 2011, 2, 1907.	1.5	47
34	FLIM FRET Technology for Drug Discovery: Automated Multiwellâ€Plate Highâ€Content Analysis, Multiplexed Readouts and Application in Situ. ChemPhysChem, 2011, 12, 609-626.	1.0	68
35	tomoFLIM - fluorescence lifetime projection tomography. , 2010, , .		0
36	Tomographic imaging of flourescence resonance energy transfer in highly light scattering media. Proceedings of SPIE, 2010, , .	0.8	1

ROMAIN F LAINE

#	Article	IF	CITATIONS
37	Förster Resonance Energy Transfer Reconstruction from Optical Backprojections in Turbid Media. , 2010, , .		0
38	Three-dimensional imaging of Förster resonance energy transfer in heterogeneous turbid media by tomographic fluorescent lifetime imaging. Optics Letters, 2009, 34, 2772.	1.7	21
39	Fluorescence lifetime optical projection tomography. Journal of Biophotonics, 2008, 1, 390-394.	1.1	62
40	Automated cell tracking using StarDist and TrackMate. F1000Research, 0, 9, 1279.	0.8	7