Romain F Laine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3425605/publications.pdf

Version: 2024-02-01

279487 329751 2,487 40 23 37 citations h-index g-index papers 60 60 60 3381 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Democratising deep learning for microscopy with ZeroCostDL4Mic. Nature Communications, 2021, 12, 2276.	5.8	295
2	TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines. Nature Methods, 2022, 19, 829-832.	9.0	269
3	C-terminal calcium binding of \hat{l}_{\pm} -synuclein modulates synaptic vesicle interaction. Nature Communications, 2018, 9, 712.	5.8	223
4	RNA Docking and Local Translation Regulate Site-Specific Axon Remodeling InÂVivo. Neuron, 2017, 95, 852-868.e8.	3.8	163
5	Structural analysis of herpes simplex virus by optical super-resolution imaging. Nature Communications, 2015, 6, 5980.	5.8	125
6	NanoJ: a high-performance open-source super-resolution microscopy toolbox. Journal Physics D: Applied Physics, 2019, 52, 163001.	1.3	120
7	Automating multimodal microscopy with NanoJ-Fluidics. Nature Communications, 2019, 10, 1223.	5.8	84
8	Artificial intelligence for microscopy: what you should know. Biochemical Society Transactions, 2019, 47, 1029-1040.	1.6	75
9	FLIM FRET Technology for Drug Discovery: Automated Multiwellâ€Plate Highâ€Content Analysis, Multiplexed Readouts and Application in Situ. ChemPhysChem, 2011, 12, 609-626.	1.0	68
10	<scp>HSV</scp> â€1 Glycoproteins Are Delivered to Virus Assembly Sites Through Dynaminâ€Dependent Endocytosis. Traffic, 2016, 17, 21-39.	1.3	63
11	De novo design of a biologically active amyloid. Science, 2016, 354, .	6.0	63
12	Nanoscopic insights into seeding mechanisms and toxicity of \hat{l}_{\pm} -synuclein species in neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3815-3819.	3.3	63
13	Fluorescence lifetime optical projection tomography. Journal of Biophotonics, 2008, 1, 390-394.	1.1	62
14	Probing the Growth Kinetics for the Formation of Uniform 1D Block Copolymer Nanoparticles by Living Crystallization-Driven Self-Assembly. ACS Nano, 2018, 12, 8920-8933.	7.3	60
15	Avoiding a replication crisis in deep-learning-based bioimage analysis. Nature Methods, 2021, 18, 1136-1144.	9.0	56
16	Single Molecule Translation Imaging Visualizes the Dynamics of Local \hat{l}^2 -Actin Synthesis in Retinal Axons. Scientific Reports, 2017, 7, 709.	1.6	53
17	Intrinsically aggregation-prone proteins form amyloid-like aggregates and contribute to tissue aging in Caenorhabditis elegans. ELife, 2019, 8, .	2.8	51
18	In Situ Visualization of Block Copolymer Selfâ€Assembly in Organic Media by Superâ€Resolution Fluorescence Microscopy. Chemistry - A European Journal, 2015, 21, 18539-18542.	1.7	48

#	Article	IF	CITATIONS
19	In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse. Biomedical Optics Express, 2011, 2, 1907.	1.5	47
20	Fluctuation-Based Super-Resolution Traction Force Microscopy. Nano Letters, 2020, 20, 2230-2245.	4.5	47
21	Retarded PDI diffusion and a reductive shift in poise of the calcium depleted endoplasmic reticulum. BMC Biology, 2015, 13, 2.	1.7	39
22	Automated cell tracking using StarDist and TrackMate. F1000Research, 2020, 9, 1279.	0.8	34
23	Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α-Synuclein and Polyglutamine in Aging <i>Caenorhabditis elegans</i>). ACS Chemical Biology, 2019, 14, 1628-1636.	1.6	30
24	DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches. Communications Biology, 2022, 5, .	2.0	30
25	Imaging in focus: An introduction to denoising bioimages in the era of deep learning. International Journal of Biochemistry and Cell Biology, 2021, 140, 106077.	1.2	27
26	Fluorescence Lifetime Readouts of Troponin-C-Based Calcium FRET Sensors: A Quantitative Comparison of CFP and mTFP1 as Donor Fluorophores. PLoS ONE, 2012, 7, e49200.	1.1	24
27	Three-dimensional imaging of Förster resonance energy transfer in heterogeneous turbid media by tomographic fluorescent lifetime imaging. Optics Letters, 2009, 34, 2772.	1.7	21
28	A Method to Quantify FRET Stoichiometry with Phasor Plot Analysis and Acceptor Lifetime Ingrowth. Biophysical Journal, 2015, 108, 999-1002.	0.2	21
29	Optil: Open-source optical projection tomography of large organ samples. Scientific Reports, 2019, 9, 15693.	1.6	20
30	Structured illumination microscopy combined with machine learning enables the high throughput analysis and classification of virus structure. ELife, 2018, 7, .	2.8	20
31	From single-molecule spectroscopy to super-resolution imaging of the neuron: a review. Methods and Applications in Fluorescence, 2016, 4, 022004.	1.1	19
32	Comparative Studies in the A30P and A53T \hat{l}_{\pm} -Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 552549.	1.8	12
33	Single-Molecule Super-Resolution Imaging of T-Cell Plasma Membrane CD4 Redistribution upon HIV-1 Binding. Viruses, 2021, 13, 142.	1.5	10
34	Application of Super-Resolution and Advanced Quantitative Microscopy to the Spatio-Temporal Analysis of Influenza Virus Replication. Viruses, 2021, 13, 233.	1.5	9
35	Automated cell tracking using StarDist and TrackMate. F1000Research, 0, 9, 1279.	0.8	7
36	A method for the fast and photonâ€efficient analysis of timeâ€domain fluorescence lifetime image data over large dynamic ranges. Journal of Microscopy, 2022, 287, 138-147.	0.8	2

#	Article	IF	CITATIONS
37	Tomographic imaging of flourescence resonance energy transfer in highly light scattering media. Proceedings of SPIE, 2010, , .	0.8	1
38	$\tilde{\text{FA}}$ rster resonance energy transfer imaging in vivo with approximated radiative transfer equation. Applied Optics, 2011, 50, 6583.	2.1	1
39	tomoFLIM - fluorescence lifetime projection tomography. , 2010, , .		O
40	$F\tilde{A}\P$ rster Resonance Energy Transfer Reconstruction from Optical Backprojections in Turbid Media. , 2010, , .		O