Jaime S Valente

List of Publications by Citations

Source: https://exaly.com/author-pdf/3425285/jaime-s-valente-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

81 2,890 31 52 g-index

83 3,082 7 4.94 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
81	Activation of MgAl Hydrotalcite Catalysts for Aldol Condensation Reactions. <i>Journal of Catalysis</i> , 1998 , 173, 115-121	7.3	261
80	Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by MgZnAl layered double hydroxides. <i>Applied Catalysis B: Environmental</i> , 2009 , 90, 330-338	21.8	214
79	Basic Properties of the Mixed Oxides Obtained by Thermal Decomposition of Hydrotalcites Containing Different Metallic Compositions. <i>Journal of Catalysis</i> , 2000 , 189, 370-381	7.3	147
78	Highly efficient photocatalytic elimination of phenol and chlorinated phenols by CeO2/MgAl layered double hydroxides. <i>Applied Catalysis B: Environmental</i> , 2011 , 102, 276-285	21.8	120
77	MeerweinPonndorfNerley reduction of carbonyl compounds catalysed by MgAl hydrotalcite. <i>Chemical Communications</i> , 1998 , 535-536	5.8	97
76	SOx removal by calcined MgAlFe hydrotalcite-like materials: effect of the chemical composition and the cerium incorporation method. <i>Environmental Science & Environmental Sci</i>	10.3	87
75	Chemical, Structural, and Morphological Changes of a MoVTeNb Catalyst during Oxidative Dehydrogenation of Ethane. <i>ACS Catalysis</i> , 2014 , 4, 1292-1301	13.1	82
74	Crystallization of Sol G el Boehmite via Hydrothermal Annealing. <i>Journal of Solid State Chemistry</i> , 2002 , 166, 182-190	3.3	81
73	Method for Large-Scale Production of Multimetallic Layered Double Hydroxides: Formation Mechanism Discernment. <i>Chemistry of Materials</i> , 2009 , 21, 5809-5818	9.6	76
72	MgHe Hydrotalcite as a Catalyst for the Reduction of Aromatic Nitro Compounds with Hydrazine Hydrate. <i>Journal of Catalysis</i> , 2000 , 191, 467-473	7.3	73
71	Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of the iron(III) oxide-MgO catalyst prepared from a Mg?Fe hydrotalcite precursor. <i>Tetrahedron Letters</i> , 1998 , 39, 2573-	-2574	72
70	Calcined layered double hydroxides MgMeAl (Me: Cu, Fe, Ni, Zn) as bifunctional catalysts. <i>Catalysis Today</i> , 2010 , 150, 340-345	5.3	64
69	Cyanoethylation of alcohols by activated MgAl layered double hydroxides: Influence of rehydration conditions and Mg/Al molar ratio on Br lasted basicity. <i>Journal of Catalysis</i> , 2011 , 279, 196-	204	62
68	Comprehending the Thermal Decomposition and Reconstruction Process of Sol L el MgAl Layered Double Hydroxides. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2089-2099	3.8	62
67	Physicochemical and Catalytic Properties of Sol G el Aluminas Aged under Hydrothermal Conditions. <i>Langmuir</i> , 2003 , 19, 3583-3588	4	62
66	Modified MgAl hydrotalcite: a highly active heterogeneous base catalyst for cyanoethylation of alcohols. <i>Chemical Communications</i> , 1998 , 1091-1092	5.8	60
65	Proposed General Sol G el Method to Prepare Multimetallic Layered Double Hydroxides: Synthesis, Characterization, and Envisaged Application. <i>Chemistry of Materials</i> , 2009 , 21, 5826-5835	9.6	59

(2014-2004)

64	Synthesis and catalytic properties of nanostructured aluminas obtained by solgel method. <i>Applied Catalysis A: General</i> , 2004 , 264, 175-181	5.1	57
63	Photocatalytic degradation of phenol by semiconducting mixed oxides derived from Zn(Ga)Al layered double hydroxides. <i>Applied Catalysis B: Environmental</i> , 2015 , 163, 352-360	21.8	52
62	Kinetic modeling of the oxidative dehydrogenation of ethane to ethylene over a MoVTeNbO catalytic system. <i>Chemical Engineering Journal</i> , 2014 , 252, 75-88	14.7	48
61	Preparation and Characterization of Sol G el MgAl Hydrotalcites with Nanocapsular Morphology. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 642-651	3.8	48
60	Hydrogen Transfer Reduction of 4-tert-Butylcyclohexanone and Aldol Condensation of Benzaldehyde with Acetophenone on Basic Solids. <i>Journal of Catalysis</i> , 2002 , 208, 30-37	7:3	45
59	Photocatalytically enhanced Cr(VI) removal by mixed oxides derived from MeAl (Me:Mg and/or Zn) layered double hydroxides. <i>Applied Catalysis B: Environmental</i> , 2013 , 140-141, 546-551	21.8	44
58	Thermal decomposition kinetics of MgAl layered double hydroxides. <i>Materials Chemistry and Physics</i> , 2012 , 133, 621-629	4.4	43
57	Low Concentration Fe-Doped Alumina Catalysts Using Sol-Gel and Impregnation Methods: The Synthesis, Characterization and Catalytic Performance during the Combustion of Trichloroethylene. <i>Materials</i> , 2014 , 7, 2062-2086	3.5	41
56	Kinetic Study of Oxidative Dehydrogenation of Ethane over MoVTeNb Mixed-Oxide Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 1775-1786	3.9	40
55	Thermokinetic study of the rehydration process of a calcined MgAl-layered double hydroxide. <i>Langmuir</i> , 2010 , 26, 4074-9	4	36
54	Dependence of chemical composition of calcined hydrotalcite-like compounds for SOx reduction. <i>Catalysis Today</i> , 2010 , 150, 332-339	5.3	36
53	A Simple Environmentally Friendly Method to Prepare Versatile Hydrotalcite-like Compounds. <i>Chemistry of Materials</i> , 2008 , 20, 1230-1232	9.6	36
52	Isophorone Isomerization as Model Reaction for the Characterization of Solid Bases: Application to the Determination of the Number of Sites. <i>Journal of Catalysis</i> , 2002 , 211, 144-149	7.3	35
51	Hydrated lime as an effective heterogeneous catalyst for the transesterification of castor oil and methanol. <i>Fuel</i> , 2013 , 110, 54-62	7.1	32
50	4-Chlorophenol Oxidation Photocatalyzed by a Calcined Mgልlወn Layered Double Hydroxide in a Co-current Downflow Bubble Column. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 1154	14-₹P55	2 ²⁹
49	Active sulfated alumina catalysts obtained by hydrothermal treatment. <i>Journal of Catalysis</i> , 2003 , 220, 317-325	7-3	27
48	Fractal Geometry Approach to Describe Mesostructured Boehmite and Gamma-Alumina Nanorods. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 1544-1551	2.3	26
47	Direct synthesis of calcium diglyceroxide from hydrated lime and glycerol and its evaluation in the transesterification reaction. <i>Fuel</i> , 2014 , 138, 126-133	7.1	24

46	Understanding the kinetic behavior of a MoVIIeNb mixed oxide in the oxydehydrogenation of ethane. <i>Fuel</i> , 2014 , 138, 15-26	7.1	24
45	Synthesis and characterization of functionalized alumina catalysts with thiol and sulfonic groups and their performance in producing 5-hydroxymethylfurfural from fructose. <i>Fuel</i> , 2017 , 198, 134-144	7.1	24
44	Long-term evaluation of NiMo/aluminafarbon black composite catalysts in hydroconversion of Mexican 538°C+ vacuum residue. <i>Catalysis Today</i> , 2005 , 109, 69-75	5.3	23
43	Selective Isobutene Oligomerization by Mesoporous MSU-SBEA Catalysts. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5809-5816	3.8	22
42	Sulfur reduction in cracked naphtha by a commercial additive: effect of feed and catalyst properties. <i>Applied Catalysis B: Environmental</i> , 2001 , 34, 137-148	21.8	22
41	CO2 capture at low temperatures (30-80 °C) and in the presence of water vapor over a thermally activated Mg-Al layered double hydroxide. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 12243-50	2.8	21
40	Physicochemical Study of Nanocapsular Layered Double Hydroxides Evolution. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 5547-5555	3.8	20
39	Influence of Mg/Al Ratio on the Thermokinetic Rehydration of Calcined MgAl Layered Double Hydroxides. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8485-8492	3.8	19
38	Novel SOx removal catalysts for the FCC process: Manufacture method, characterization, and pilot-scale testing. <i>Energy and Environmental Science</i> , 2011 , 4, 4096	35.4	19
37	Phosphating alumina: A way to tailor its surface properties. <i>Microporous and Mesoporous Materials</i> , 2006 , 94, 277-282	5.3	19
36	Isophorone Isomerization as Model Reaction for the Characterization of Solid Bases: Application to the Determination of the Number of Sites. <i>Journal of Catalysis</i> , 2002 , 211, 144-149	7.3	17
35	Y zeolite depolymerizationEecrystallization: Simultaneous formation of hierarchical porosity and Na dislodging. <i>Microporous and Mesoporous Materials</i> , 2011 , 143, 375-382	5.3	16
34	Crystallization of faujasite Y from seeds dispersed on mesoporous materials. <i>Microporous and Mesoporous Materials</i> , 2010 , 132, 363-374	5.3	15
33	New synthesis technique of supported ZSM-5 using organo-alumino-silicic gels. <i>Microporous and Mesoporous Materials</i> , 2007 , 100, 70-76	5.3	15
32	Synthesis and characterization of nanocapsules with shells made up of Al13 tridecamers. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 22222-7	3.4	15
31	Green synthesis of hydrocalumite-type compounds and their evaluation in the transesterification of castor bean oil and methanol. <i>Fuel</i> , 2013 , 110, 23-31	7.1	14
30	Commercial Hydrated Lime as a Cost-Effective Solid Base for the Transesterification of Wasted Soybean Oil with Methanol for Biodiesel Production. <i>Energy & Energy & </i>	4.1	14
29	Thermochemical and Cyclability Analyses of the CO2 Absorption Process on a Ca/Al Layered Double Hydroxide. <i>Journal of Environmental Engineering, ASCE</i> , 2011 , 137, 1058-1065	2	14

(2020-2003)

28	Effect of highly reactive sulfur species on sulfur reduction in cracking gasoline. <i>Applied Catalysis B: Environmental</i> , 2003 , 42, 145-154	21.8	14	
27	Structural evolution of phosphated alumina during sol-gel synthesis. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 17435-9	3.4	13	
26	Innovative method for hydrocalumite-like compounds Preparation and their evaluation in the transesterification reaction. <i>Applied Clay Science</i> , 2015 , 114, 509-516	5.2	12	
25	Sulfate Ions and Boehmite Crystallization in a Sol Made with Aluminum Tri-sec-butoxide and 2-Propanol. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 103-107	3.8	11	
24	Zinc-aluminates for an in situ sulfur reduction in cracked gasoline. <i>Applied Catalysis B: Environmental</i> , 2008 , 81, 1-13	21.8	11	
23	Quantitative relationships between boehmite and 🗟 lumina crystallite sizes. <i>Journal of Materials Research</i> , 2004 , 19, 1499-1503	2.5	11	
22	MI Subauer Spectroscopic Study of Iron Containing Hydrotalcite Catalysts for the Reduction of Aromatic Nitro Compounds. <i>Hyperfine Interactions</i> , 2000 , 131, 43-50	0.8	11	
21	Controlling the redox properties of nickel in NiO/ZrO2 catalysts synthesized by solgel. <i>Catalysis Science and Technology</i> , 2018 , 8, 4070-4082	5.5	10	
20	Manganese cryptomelane-type oxides: A thermo-kinetic and morphological study. <i>Applied Surface Science</i> , 2008 , 254, 3006-3013	6.7	10	
19	Synthesis of silicalite-1 from organo-silicic gels. <i>Journal of Colloid and Interface Science</i> , 2008 , 323, 359-	64).3	10	
18	Theoretical Study of the Catalytic Performance of Activated Layered Double Hydroxides in the Cyanoethylation of Alcohols. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 8777-8784	3.8	9	
17	Sulfated Nanocapsular Aluminas: Controlling their Br Br Bsted and Lewis Acidity. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 16476-16484	3.8	9	
16	Synthesis and characterization of SnOx/Al2O3 derived gel catalysts. <i>Reaction Kinetics and Catalysis Letters</i> , 1996 , 59, 247-251		7	
15	Discerning the Metal Doping Effect on Surface Redox and Acidic Properties in a MoVTeNbO for Propa(e)ne Oxidation. <i>ACS Omega</i> , 2021 , 6, 15279-15291	3.9	6	
14	Synthesis and morphological modification of semiconducting Mg(Zn)Al(Ga)IIDH/ITO thin films. <i>Materials Chemistry and Physics</i> , 2014 , 147, 339-348	4.4	5	
13	Electrochemical characterization of carbon paste electrodes modified with MgZnGa and ZnGaAl hydrotalcite-like compounds. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 3145-3152	2.6	5	
12	On the influence of particle shape and process conditions in the pressure drop and hydrodynamics in a wall-effect fixed bed. <i>Chemical Engineering Communications</i> , 2018 , 205, 1323-1341	2.2	4	
11	On the simultaneous effect of temperature, pressure, water content and spacelime on acrylic acid production from propane. <i>Fuel</i> , 2020 , 282, 118852	7.1	4	

10	Selective Vanillin Hydrodeoxygenation on Synthetic Takovite Derived NiAlOx Mixed Oxide. <i>Topics in Catalysis</i> , 2020 , 63, 428-436	2.3	3
9	Dynamic water vapor sorption on Mg(Ga3+)O mixed oxides: Analysis of the LDH thermal regeneration process. <i>Thermochimica Acta</i> , 2013 , 553, 49-53	2.9	3
8	Effect of tetrabutyltin on the acidity and reducibility of platinum-tin alumina supported sol-gel catalysts. <i>Reaction Kinetics and Catalysis Letters</i> , 1997 , 61, 49-55		3
7	Dibenzothiophene Hydrodesulfurization over P-CoMo on Sol-Gel Alumina Modified by La Addition. Effect of Rare-Earth Content. <i>Catalysts</i> , 2019 , 9, 359	4	2
6	On the role of oxidation states in the electronic structure via the formation of oxygen vacancies of a doped MoVTeNbOx in propylene oxidation. <i>Applied Surface Science</i> , 2022 , 573, 151428	6.7	2
5	Metal solution precursors: their role during the synthesis of MoVTeNb mixed oxide catalysts. <i>Catalysis Science and Technology</i> , 2018 , 8, 3123-3132	5.5	2
4	On the effect of a high reactive sulfur species on sulfur reduction in gasoline. <i>Studies in Surface Science and Catalysis</i> , 2004 , 149, 355-367	1.8	1
3	Manufacture Process Scale-Up and Industrial Testing of Novel Catalysts for SOx-Emissions Control in FCC Units. <i>Catalysis Letters</i> , 2019 , 149, 272-282	2.8	1
2	Upcycling of Municipal Glass and Aluminum Wastes for Synthesis of Hierarchical ZSM-5. <i>Clean - Soil, Air, Water</i> ,2100209	1.6	
1	EFECTO DEL DOBLE PROCESO DE DESPOLIMERIZACION-RECRISTALIZACIO EN LAS PROPRIEDADES FISICOQUÍMICAS DE LA FAUJASITA / EFEITO DO PROCESSO DE DESPOLIMERIZA DO CRISTALIZA DO DUPLA SOBRE AS PROPRIEDADES FOR BICO-QUO MICA DO	Ο	