
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3425261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Registration of â€~S13â€3851C' soybean as a highâ€yielding conventional cultivar with high oil content and broad disease resistance and adaptation. Journal of Plant Registrations, 2022, 16, 21-28.	0.5	10
2	Registration of â€~S13â€10592C', a highâ€yielding soybean cultivar with resistance to multiple diseases and elevated oil content. Journal of Plant Registrations, 2022, 16, 252-261.	0.5	1
3	â€~S16â€7922C': A semiâ€determinate maturity group IV conventional soybean cultivar with high yield and broad disease resistance. Journal of Plant Registrations, 2022, 16, 300-315.	0.5	2
4	Mitochondrial Genome Resource of Phomopsis longicolla, a Fungus Causing Phomopsis Seed Decay in Soybean. PhytoFrontiers, 2021, 1, 120-122.	1.6	1
5	â€~S13â€1955C': A highâ€yielding conventional soybean with high oil content, multiple disease resistance, ar broad adaptation. Journal of Plant Registrations, 2021, 15, 318-325.	nd 0.5	9
6	Registration of â€~S13â€⊋743C' as a conventional soybean cultivar with high oil content, broad disease resistance, and high yield potential. Journal of Plant Registrations, 2021, 15, 306-312.	0.5	10
7	Identification of the initial water-site and movement in Gleditsia sinensis seeds and its relation to seed coat structure. Plant Methods, 2021, 17, 55.	4.3	4
8	Identification and application of the Pigmâ€l gene in rice disease resistance breeding. Plant Biology, 2020, 22, 1022-1029.	3.8	4
9	Registration of â€~S14â€15138GT' soybean as a highâ€yielding RR1/STS cultivar with broad disease resistance and adaptation. Journal of Plant Registrations, 2020, 14, 311-317.	² 0.5	7
10	Registration of â€~S14â€9017CT' soybean cultivar with high yield, resistance to multiple diseases, and high seed oil content. Journal of Plant Registrations, 2020, 14, 347-356.	0.5	7
11	Identification and Mapping of Stable QTLs for Seed Oil and Protein Content in Soybean [<i>Glycine max</i> (L.) Merr.]. Journal of Agricultural and Food Chemistry, 2020, 68, 6448-6460.	5.2	23
12	Registration of â€~S14â€15146CT' soybean, a highâ€yielding RR1 cultivar with high oil content and broad disease resistance and adaptation. Journal of Plant Registrations, 2020, 14, 35-42.	0.5	9
13	Evaluation of soybean genotypes for reaction to natural field infection by Cercospora species causing purple seed stain. PLoS ONE, 2019, 14, e0222673.	2.5	11
14	Registration of Highâ€Yielding Exotically Derived Soybean Germplasm Line LCO3â€4561â€14. Journal of Plant Registrations, 2019, 13, 237-244.	0.5	4
15	Occurrence of Cotyledon Spot on Soybean Caused by <i>Fusarium oxysporum</i> in China. Plant Disease, 2019, 103, 2967-2967.	1.4	2
16	Comparison of the Mitochondrial Genome Sequences of Six Annulohypoxylon stygium Isolates Suggests Short Fragment Insertions as a Potential Factor Leading to Larger Genomic Size. Frontiers in Microbiology, 2018, 9, 2079.	3.5	84
17	Development of a seedling inoculation technique for rapid evaluation of soybean for resistance to Phomopsis longicolla under controlled conditions. Plant Methods, 2018, 14, 81.	4.3	8
18	The Interactomic Analysis Reveals Pathogenic Protein Networks in Phomopsis longicolla Underlying Seed Decay of Soybean. Frontiers in Genetics, 2018, 9, 104.	2.3	37

#	Article	IF	CITATIONS
19	First Report of Damping-Off of Dent Corn Seedlings Caused by <i>Pythium graminicola</i> in Georgia. Plant Disease, 2018, 102, 1464-1464.	1.4	2
20	Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing. Theoretical and Applied Genetics, 2017, 130, 1041-1051.	3.6	80
21	Evaluation of Commercial Soybean Cultivars for Reaction to Phomopsis Seed Decay. Plant Disease, 2017, 101, 1990-1997.	1.4	12
22	Assessment of parasitic fungi for reducing soybean cyst nematode with suppressive soil in soybean fields of northeast China. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2017, 67, 730-736.	0.6	16
23	Analysis of the genome sequence of Phomopsis longicolla: a fungal pathogen causing Phomopsis seed decay in soybean. BMC Genomics, 2017, 18, 688.	2.8	40
24	Identification of QTL with large effect on seed weight in a selective population of soybean with genome-wide association and fixation index analyses. BMC Genomics, 2017, 18, 529.	2.8	87
25	First Report of Root Rot of Cowpea Caused by <i>Fusarium equiseti</i> in Georgia in the United States. Plant Disease, 2017, 101, 1674-1674.	1.4	9
26	Identification of a soybean rust resistance gene in PI 567104B. Theoretical and Applied Genetics, 2016, 129, 863-877.	3.6	13
27	Genome-wide functional annotation of Phomopsis longicolla isolate MSPL 10-6. Genomics Data, 2016, 8, 67-69.	1.3	2
28	Draft genome sequence of Diaporthe aspalathi isolate MS-SSC91, a fungus causing stem canker in soybean. Genomics Data, 2016, 7, 262-263.	1.3	18
29	A searchable database for the genome of Phomopsis longicolla (isolate MSPL 10-6). Bioinformation, 2016, 12, 233-236.	0.5	0
30	Evaluation of Diverse Soybean Germplasm for Resistance to Phomopsis Seed Decay. Plant Disease, 2015, 99, 1517-1525.	1.4	25
31	Screening a Diverse Soybean Germplasm Collection for Reaction to Purple Seed Stain Caused by <i>Cercospora kikuchii</i> . Plant Disease, 2015, 99, 1140-1146.	1.4	11
32	Draft Genome Sequence of <i>Phomopsis longicolla</i> Type Strain TWH P74, a Fungus Causing Phomopsis Seed Decay in Soybean. Genome Announcements, 2015, 3, .	0.8	12
33	Inheritance of and molecular markers for purple seed stain resistance in soybean. Euphytica, 2015, 206, 701-709.	1.2	6
34	Draft genome sequence of Phomopsis longicolla isolate MSPL 10-6. Genomics Data, 2015, 3, 55-56.	1.3	20
35	Analysis of Phakopsora pachyrhizi transcript abundance in critical pathways at four time-points during infection of a susceptible soybean cultivar using deep sequencing. BMC Genomics, 2013, 14, 614.	2.8	30

Resistance to Phomopsis Seed Decay in Soybean. , 2013, 2013, 1-8.

#	Article	IF	CITATIONS
37	First Report of Alternaria Leaf Spot of Banana Caused by <i>Alternaria alternata</i> in the United States. Plant Disease, 2013, 97, 1116-1116.	1.4	7
38	Effect of Lactofen, Azoxystrobin, and Genotypes on Charcoal Rot, Phomopsis Seed Decay, and Pod and Stem Blight in Soybean. Plant Disease, 2012, 96, 1154-1158.	1.4	15
39	Reactions of Commercial Soybean Cultivars from the Mid South to <i>Soybean Mosaic Virus</i> . Crop Science, 2012, 52, 1990-1997.	1.8	9
40	Reactions of Midâ€Southern U.S. Soybean Cultivars to <i>Bean Pod Mottle Virus</i> and <i>Tobacco Ringspot Virus</i> . Crop Science, 2012, 52, 1980-1989.	1.8	6
41	Co-Inoculation with Rhizobia and AMF Inhibited Soybean Red Crown Rot: From Field Study to Plant Defense-Related Gene Expression Analysis. PLoS ONE, 2012, 7, e33977.	2.5	61
42	Identification of a new soybean rust resistance gene in PI 567102B. Theoretical and Applied Genetics, 2012, 125, 133-142.	3.6	110
43	Identification of genes expressed by <i>Phakopsora pachyrhizi</i> , the pathogen causing soybean rust, at a late stage of infection of susceptible soybean leaves. Plant Pathology, 2012, 61, 773-786.	2.4	18
44	Phomopsis Seed Decay of Soybean. , 2011, , .		12
45	Gene Expression in Leaves of Susceptible Glycine max during Infection with Phakopsora pachyrhizi Using Next Generation Sequencing. Sequencing, 2011, 2011, 1-14.	0.5	12
46	Resistance to Phomopsis Seed Decay Identified in Maturity Group V Soybean Plant Introductions. Crop Science, 2011, 51, 2681-2688.	1.8	20
47	Aggressiveness of <i>Phomopsis longicolla</i> and Other <i>Phomopsis</i> spp. on Soybean. Plant Disease, 2010, 94, 1035-1040.	1.4	53
48	Soybean Growth and Soil Microbial Populations under Conventional and Conservational Tillage Systems. Journal of Crop Improvement, 2010, 24, 337-348.	1.7	3
49	Reaction of Soybean Rustâ€Resistant Lines Identified in Paraguay to Mississippi Isolates of <i>Phakopsora pachyrhizi</i> . Crop Science, 2009, 49, 887-894.	1.8	20
50	Evaluation of Selected Genotypes of Soybean for Resistance to <i>Phakopsora pachyrhizi</i> . Plant Health Progress, 2009, 10, .	1.4	7
51	First Report of Soybean yellow mottle mosaic virus in Soybean in North America. Plant Disease, 2009, 93, 1214-1214.	1.4	12
52	Quantification of Fusarium solani f. sp. glycines isolates in soybean roots by colony-forming unit assays and real-time quantitative PCR. Theoretical and Applied Genetics, 2008, 117, 343-352.	3.6	50
53	Occurrence of Asian Soybean Rust Caused by <i>Phakopsora pachyrhizi</i> in Mississippi. Plant Health Progress, 2007, 8, .	1.4	10
54	Irrigation and Inoculation Treatments that Increase the Severity of Soybean Sudden Death Syndrome in the Field. Crop Science, 2006, 46, 2547-2554.	1.8	46

#	Article	IF	CITATIONS
55	Lignin Degradation by Fusarium solani f. sp. glycines. Plant Disease, 2006, 90, 77-82.	1.4	48
56	Phytotoxicity of Fusarium solani culture filtrates from soybeans and other hosts assayed by stem cuttings. Australasian Plant Pathology, 2004, 33, 9.	1.0	36
57	Detection and Quantification of Fusarium solani f. sp. glycines in Soybean Roots with Real-Time Quantitative Polymerase Chain Reaction. Plant Disease, 2004, 88, 1372-1380.	1.4	95
58	Occurrence of Soybean Stem Canker (Diaporthe phaseolorum var. meridionalis) in Wisconsin. Plant Disease, 2004, 88, 576-576.	1.4	10
59	Molecular detection of Fusarium solani f. sp. glycines in soybean roots and soil. Plant Pathology, 2003, 52, 74-83.	2.4	57
60	Occurrence of Diaporthe phaseolorum var. meridionalis on Soybean in Illinois. Plant Disease, 2001, 85, 1211-1211.	1.4	3
61	Molecular Differentiation of Fusarium solani f. sp. glycines from Other F. solani Based on Mitochondrial Small Subunit rDNA Sequences. Phytopathology, 2000, 90, 491-497.	2.2	41
62	Registration of â€~S16â€5540GT' soybean cultivar with high yield, resistance to multiple diseases, elevated protein content, and wide adaptation. Journal of Plant Registrations, 0, , .	0.5	2
63	Registration of †S16â€15170C' soybean: A highâ€yielding indeterminate maturity group V cultivar with wic adaptability and multiple disease resistance. Journal of Plant Registrations, 0, , .	le _{0.5}	1
64	â€~ShowMeSoy 4301': Highâ€yielding soybean with multiple disease resistance and elevated seed oil content. Journal of Plant Registrations, 0, , .	0.5	0
65	Registration of †S16â€11651C', a conventional soybean cultivar with high yield, resistance to multiple diseases, and broad adaptation. Journal of Plant Registrations, 0, , .	0.5	0
66	Registration of â€~S15â€10434C' soybean cultivar with high yield, resistance to multiple diseases, and wide adaptation. Journal of Plant Registrations, 0, , .	0.5	1
67	â€~S16â€14730C': A highâ€yielding conventional soybean cultivar with indeterminate growth habit and multiple disease resistance adapted to the Midâ€South. Journal of Plant Registrations, 0, , .	0.5	1
68	Registration of â€~S16â€14801C': A highâ€yielding determinate maturity group V soybean cultivar with multiple disease resistance, salt tolerance, and broad adaptation. Journal of Plant Registrations, 0, , .	0.5	0
69	Registration of â€~S16â€ 3 747CT': A highâ€yielding determinate maturity group V soybean cultivar with broad biotic and abiotic stressors tolerance. Journal of Plant Registrations, 0, , .	d 0.5	3