
Xubo Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3424967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical and experimental examination of simple coaxial photonic crystals for undergraduate teaching. American Journal of Physics, 2022, 90, 152-158.	0.7	1
2	A dualâ€band superconducting filter with a large bandwidth ratio. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22068.	1.2	1
3	Wideband and wide stopband superconducting bandpass filter using asymmetric steppedâ€impedance resonators connected to open stub. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22206.	1.2	4
4	A Wide Stopband Wideband HTS Filter Using Stepped-Impedance Resonators With an Interdigital Capacitor Structure. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.7	3
5	Compact ultra-narrowband superconducting filter using N-spiral resonator with open-loop secondary coupling structure*. Chinese Physics B, 2020, 29, 068502.	1.4	2
6	Miniaturized Ultra-Narrowband Superconducting Microstrip Filter With Stable Coupling Using Optimized Twin Spiral-In-Spiral-Out Resonators. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-7.	1.7	6
7	A Wideband HTS Filter Using Strong Coupling Coplanar Spiral Resonator Structure. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	9
8	Synthesis Design of Wideband High-Selectivity HTS Filter by Cascading Dual-Mode Resonators. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-7.	1.7	2
9	High-order dual-band superconducting filter with independently controllable passbands and wide stopband. International Journal of RF and Microwave Computer-Aided Engineering, 2018, 28, e21291.	1.2	8
10	A Design Method of Multimode Multiband Bandpass Filters. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 2791-2799.	4.6	22
11	Coupling Matrix Compression Technique for High-Isolation Dual-Mode Dual-Band Filters. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 2814-2821.	4.6	14
12	Design of a moderate-wideband superconducting filter with modified stub structure. International Journal of RF and Microwave Computer-Aided Engineering, 2018, 28, e21220.	1.2	0
13	Compact Ultra-Narrowband Superconducting Filter Using Asymmetric Twin-Spiral Resonators. , 2018, , .		3
14	Relationship Between Band-Edge Steepness and Power-Handling Capability in Filters. , 2018, , .		0
15	High isolation Superconducting Diplexer Designed with Double-Side Structure. , 2018, , .		1
16	Design of a Low-Band Wideband Superconducting Filter Using Triple-Mode Resonator. , 2018, , .		3
17	Superconducting Wideband Bandpass Filter Based on Triple-Mode Resonator. IEEE Microwave and Wireless Components Letters, 2018, 28, 588-590.	3.2	7
18	A bandpass filter using asymmetric stepped-impedance resonators and symmetric T-shape interdigital capacitor structures with wide out-of-band rejection. International Journal of RF and Microwave Computer-Aided Engineering, 2017, 27, e21121.	1.2	3

Хиво Сио

#	Article	IF	CITATIONS
19	Design of absorptive superconducting filter. Electronics Letters, 2017, 53, 728-730.	1.0	17
20	Compact superconducting lowpass filter with wide stopband. Electronics Letters, 2017, 53, 931-933.	1.0	10
21	Superconducting Ultra-Wideband (UWB) Bandpass Filter Design Based on Quintuple/Quadruple/ Triple-Mode Resonator. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 1281-1293.	4.6	41
22	High performance superconducting common resonator diplexer and analysis between isolations and topologies. Microwave and Optical Technology Letters, 2015, 57, 1952-1956.	1.4	2
23	Compact Superconducting Diplexer Design With Conductor-Backed Coplanar Waveguide Structures. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-4.	1.7	19
24	UHF band switchable superconducting filter with pin diode switches. Electronics Letters, 2014, 50, 775-777.	1.0	6
25	A UHF band wideband HTS filter with wide upper stopband. Microwave and Optical Technology Letters, 2014, 56, 600-603.	1.4	4
26	A mechanical tuning method for superconducting filter in both frequency domain and time domain. Microwave and Optical Technology Letters, 2014, 56, 217-223.	1.4	3
27	Design of continuously tunable superconducting filter with semiconductor varactors. Microwave and Optical Technology Letters, 2014, 56, 775-777.	1.4	2
28	Wideband superconducting diplexer with steppedâ€impedance crossâ€structure. Electronics Letters, 2014, 50, 1324-1326.	1.0	11
29	Triâ€band superconducting bandpass filter with controllable passband specifications. Electronics Letters, 2014, 50, 1456-1457.	1.0	9
30	Four-Pole Narrowband Superconducting Tunable Filter at VHF-Band. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	3
31	Design of a High-Order Dual-Band Superconducting Filter With Controllable Frequencies and Bandwidths. IEEE Transactions on Applied Superconductivity, 2014, 24, 3-7.	1.7	14
32	Design of Compact Superconducting Diplexer With Spiral Short-Circuited Stubs. IEEE Transactions on Applied Superconductivity, 2014, 24, 16-20.	1.7	2
33	Highâ€performance narrowband superconducting filters with high <i>Q</i> resonators at Xâ€band. Microwave and Optical Technology Letters, 2014, 56, 1516-1520.	1.4	4
34	Superconducting Varactor Tunable Filter With Constant Bandwidth Using Coupling Line. IEEE Microwave and Wireless Components Letters, 2014, 24, 628-630.	3.2	7
35	Low Loss Tunable Superconducting Dual-Mode Filter at L-Band Using Semiconductor Varactors. IEEE Microwave and Wireless Components Letters, 2014, 24, 170-172.	3.2	19
36	A Compact Superconducting Filter at 6.5 MHz Using Capacitor-Loaded Spiral-in-Spiral-Out Resonators. IEEE Microwave and Wireless Components Letters, 2014, 24, 242-244.	3.2	3

Хиво Сио

#	Article	IF	CITATIONS
37	Design of a High-Power Superconducting Filter With Novel DCS Structures. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	6
38	An Ultra-Low Loss 2 B Reconfigurable Superconducting Filter at P-Band. IEEE Microwave and Wireless Components Letters, 2013, 23, 19-21.	3.2	7
39	Design and performance of an HTS wideband microstrip bandpass filter at Xâ€band. Microwave and Optical Technology Letters, 2013, 55, 1027-1029.	1.4	4
40	Compact superconducting dualâ€band bandpass filter by combining bandpass and bandstop filters. Electronics Letters, 2013, 49, 1230-1232.	1.0	20
41	A UHF-Band Narrow-Band HTS Bandpass Filter With Wide Stopband Using Interdigital Structure. IEEE Transactions on Applied Superconductivity, 2013, 23, 3-7.	1.7	58
42	A Miniature Wideband VHF Superconducting Filter Using Double-Surface Quasi-CPW Spiral Structures. IEEE Microwave and Wireless Components Letters, 2013, 23, 329-331.	3.2	10
43	Dual-Band Superconducting Bandpass Filter Using Stub-Loaded Resonators With Controllable Coupling and Feeding Structures. IEEE Microwave and Wireless Components Letters, 2013, 23, 400-402.	3.2	42
44	Design of a Superconducting Ultra-Wideband (UWB) Bandpass Filter With Sharp Rejection Skirts and Miniaturized Size. IEEE Microwave and Wireless Components Letters, 2013, 23, 72-74.	3.2	48
45	Design and tuning of superconducting filter at VHFâ€band with mechanically switchable interdigital capacitors. Electronics Letters, 2013, 49, 297-298.	1.0	4
46	Dualâ€band superconducting bandpass filter with embedded resonator structure. Electronics Letters, 2013, 49, 1096-1097.	1.0	6
47	Triâ€band superconducting bandpass filter with high selectivity. Electronics Letters, 2013, 49, 658-659.	1.0	14
48	A high performance narrowband superconducting filter at Kuâ€band. Microwave and Optical Technology Letters, 2012, 54, 1514-1516.	1.4	4
49	A sixâ€pole ultraâ€narrowband highâ€temperature super conducting filter at Sâ€band. Microwave and Optical Technology Letters, 2011, 53, 435-438.	1.4	3
50	Concerning the influence of the resonator structures on the quality factor and design of an ultra-narrowband superconducting filter. Microwave and Optical Technology Letters, 2010, 52, 1647-1649.	1.4	2
51	An optimum superconducting ultraâ€wideband bandpass filter at VHF band. Microwave and Optical Technology Letters, 2010, 52, 2639-2641.	1.4	0
52	Accurate design of a compact superconducting microstrip filter. Microwave and Optical Technology Letters, 2009, 51, 141-144.	1.4	2
53	An independently tunable secondâ€passband by spiral open stubs in dualâ€band HTS filter design. Microwave and Optical Technology Letters, 2009, 51, 2007-2010.	1.4	1
54	Field test of HTS receivers on CDMA demonstration cluster in China. Science Bulletin, 2009, 54, 612-615.	1.7	21

Хиво Сио

#	Article	IF	CITATIONS
55	UHF Band Ultra-Narrowband Superconducting Filter With Double U-Type Secondary Coupling Structure. IEEE Microwave and Wireless Components Letters, 2009, 19, 707-709.	3.2	10
56	An HTS Wideband Filter Using Interdigital-Like Resonators at UHF Band. IEEE Microwave and Wireless Components Letters, 2009, 19, 704-706.	3.2	4
57	A compact narrowband HTS filter with an extended upper stopband. Microwave and Optical Technology Letters, 2008, 50, 1066-1069.	1.4	2
58	A method of double cross oupling lines for HTS filter design. Microwave and Optical Technology Letters, 2008, 50, 1874-1876.	1.4	1
59	Cryogenic low noise amplifier for VHF band applied in superconducting filter. Microwave and Optical Technology Letters, 2008, 50, 1937-1940.	1.4	1
60	A novel HTS filter with improved outâ€ofâ€band rejection by introducing a quarterâ€wavelength spiral stub. Microwave and Optical Technology Letters, 2008, 50, 2455-2457.	1.4	0
61	Design and Performance of an Ultra-Narrowband Superconducting Filter at UHF Band. IEEE Microwave and Wireless Components Letters, 2008, 18, 395-397.	3.2	15
62	Design of a High-Power Superconducting Filter Using Resonators With Different Linewidths. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 2555-2561.	4.6	19
63	HTS narrowband stripline filter at 2.1 GHz with high power handling capability. Microwave and Optical Technology Letters, 2007, 49, 254-257.	1.4	13
64	Mechanism study of mechanical tuning in HTS filter application. Microwave and Optical Technology Letters, 2007, 49, 1565-1568.	1.4	9
65	Design of a novel HTS open-loop SIR filter with the relocation of its second passband. Microwave and Optical Technology Letters, 2007, 49, 2097-2101.	1.4	2
66	A Novel HTS Shuttle-Shape Resonator for High-Power Application. Journal of Superconductivity and Novel Magnetism, 2007, 20, 37-41.	1.8	14
67	Field trial of an HTS filter system on a CDMA base station. Science Bulletin, 2007, 52, 171-174.	1.7	6